
1

Finite State Machines
■  Readings: 6-6.4.7
■  Need to implement circuits that remember history

■  Traffic Light controller, Sequence Lock, ...
■  History will be held in flip flops
■  Sequential Logic needs more complex design steps

■  State Diagram to describe behavior
■  State Table to specify functions (like Truth Table)
■  Implementation of combinational logic as controller

Controller
(combinational logic)

FFs

Inputs Outputs

Next
State

Previous
(Current)

State

2

Finite State Machine Example

Example: Odd Parity Checker

Assert output whenever have previously seen an odd # of 1's
 (I.e. how many have you seen NOT INCLUDING the current one)

State
Diagram

Even: State = 0, Odd: State = 1

Even

Odd

Reset

0/0

0/1

1/1 1/0

Present State Input Output Next State
0 0
0 1
1 0
1 1

3

Finite State Machine Example (cont.)
NS = PS xor Input; OUT = PS

Clk

Input

1

0

0

1

1

0

1

0

1

1

1

0

D

R

Q
Input

CLK

PS

Reset

NS Output

PS/Output

4

State Diagrams
■  Graphical diagram of FSM behavior
■  States represented by circles
■  Transitions (actions) represented by

arrows connecting states
■  Lables on Transitions give

<triggering input pattern> / <outputs>
■  Note: We cover Mealy machines here;

Moore machines put outputs on states,
not transitions

■  Finite State Machine: State Diagram
with finite number of states

Even

Odd

Reset

0/0

0/1

1/1 1/0

5

FSM Design Process

■  1. Understand the problem

■  2. Draw the state diagram

■  3. Use state diagram to produce state table

■  4. Implement the combinational control logic

6

Vending Machine Example

■  Vending Machine:
■  Deliver package of gum after >= 10 cents deposited
■  Single coin slot for dimes, nickels
■  No change returned

■  State Diagram:
Vending
Machine

FSM

N
D
Reset
Clk

Open Coin
Sensor Gum

Release
Mechanism

7

Vending Machine Example (cont.)

■  State Table:

8

Vending Machine Example (cont.)

■  Implementation:

9

FSMs in Verilog - Declarations
module simple (clk, reset, w, out);
 input clk, reset, w;

 output out;

 reg [1:0] ps; // Present State

 reg [1:0] ns; // Next State

10

FSMs in Verilog – Combinational Logic
parameter [1:0] A = 2'b00, B = 2'b01, C = 2'b10;

// Next State Logic
always @(*) begin
 case (ps)
 A: if (w) ns = B;
 else ns = A;
 B: if (w) ns = C;
 else ns = A;
 C: if (w) ns = C;
 else ns = A;
 default: ns = 2'bxx;
 endcase

end

// Output Logic – could also be “always”,

// or part of next-state logic.

assign out = (ps == C);

11

FSMs in Verilog – DFFs
 // Sequential Logic (DFFs)
 always @(posedge clk)

 if (reset)

 ps <= A;

 else
 ps <= ns;

endmodule

12

FSM Testbench
module simple_testbench();
 reg clk, reset, w;
 wire out;

 simple dut (.clk, .reset, .w, .out);

 // Set up the clock.
 parameter CLOCK_PERIOD=100;

 initial clk=1;

 always begin
 #(CLOCK_PERIOD/2);
 clk = ~clk;
 end

13

FSM Testbench (cont.)

 // Design inputs. Each line is a clock cycle.
 // ONLY USE THIS FORM for testbenches!!!
 initial begin
 @(posedge clk);
 reset <= 1; @(posedge clk);
 reset <= 0; w <= 0; @(posedge clk);
 @(posedge clk);
 @(posedge clk);
 @(posedge clk);
 w <= 1; @(posedge clk);
 w <= 0; @(posedge clk);
 w <= 1; @(posedge clk);
 @(posedge clk);
 @(posedge clk);
 @(posedge clk);
 w <= 0; @(posedge clk);
 @(posedge clk);
 $stop; // End the simulation.
 end

endmodule

14

Testbench Waveforms

clk

reset

w

ps[1:0]

out

0 200 400 600 800 1000 1200 1400

A
00

0/0

B
01

C
10 0/0

0/1

1/0
1/0

1/1

Reset

15

String Recognizer Example

■  Recognize the string: 101

■  Input: 1 0 0 1 0 1 0 1 1 0 0 1 0
■  Output:

■  State Machine:

16

String Recognizer Example (cont.)

■  State Table:

17

= vs. <=

■  = (“Blocking”) assign immediately
■  <= (“Non-Blocking”) first eval all righthand sides,

then do all assignments simultaneously.

module swap1();
 ...
 reg [3:0] val0, val1;

 always @(posedge clk) begin
 if (swap) begin
 val0=val1;
 val1=val0;
 end
 out=val1;
 end
endmodule

module swap2();
 ...
 reg [3:0] val0, val1;

 always @(posedge clk) begin
 if (swap) begin
 val0<=val1;
 val1<=val0;
 end
 out<=val1;
 end
endmodule

18

= vs. <= in practice
■  = in combinational logic: always @*
■  <= in sequential, ps<=ns: always @(posedge clk)
■  NEVER mix in one always block!
■  Each variable written in only one always block

// Output logic
always @(*) begin
 out = (ps == A);

// Next State Logic
always @(*) begin
 case (ps)
 A: if (w) ns = B;
 else ns = A;
 B: if (w) ns = C;
 else ns = A;
 C: if (w) ns = C;
 else ns = A;
 default: ns = 2'bxx;
 endcase

end

// Sequential Logic
always @(posedge clk) begin
 if (reset)
 ps <= A;
 else
 ps <= ns;

end

19

Subdividing FSMs

■  Some problems best solved with multiple pieces

■  Psychic Tester:
■  Machine generates pattern of 4 values (on or off)
■  If user guesses 8 patterns in a row, they’re psychic

■  States?

20

Subdividing FSMs (cont.)

■  Pieces?

