

Lab 6 - Y86 Version 2: Adding Conditional
Instructions

You may work on this lab in partners. If you would like to change your partner, you
must email the TAs (specifically Mark) for logistical purposes.

To implement the y86 version 2, you will add the conditional jump (JXX) and
conditional move (CMOVXX) instructions to your y86v1 processor. As part of this, you
will have to modify your ALU to generate the condition codes flags and add the
condition code registers to your processor.
For students who implement a sophistic design to optimize the hardware cost and

timing, we will give them extra points, please point it out to your TA when you

check it off

Getting Started

It is best to start out with a brand new design for your y86 version 2. To do this, create a
new workspace for your y86v2 with a new empty design. Then, add all your source files
from y86v1 into your y86v2 design. Make sure you choose Make Local Copy when
adding existing files so you actually copy the files to the y86v2 design. Then, you should
start by compiling and testing this new design with your version 1 tests just to make
sure you are starting with a good design.

There are seven branch instructions (JXX) and seven move instructions (CMOVXX) in
the Y86 instruction set that you will now implement. Note that these instructions are
quite similar: jumps test the condition codes to decide whether to change the program
counter, while moves test the condition codes to decide whether to write to the register
file.

 <= < == != >= >
jmp jle jl je jne jge jg
rrmovl cmovle cmovl cmove cmovne cmovge cmovg

1. ALU

The first step is to augment the ALU with three 1-bit outputs: ZF (zero flag), SF (sign
flag, for negative results), and OF (overflow flag).

OF should be high if adding or subtracting caused an arithmetic overflow (e.g., an
overflow occurs is adding two positive numbers results in a negative number; what
other cases are there?).

After you have compiled your ALU, right-click on the ALU symbol in your CPU block

diagram, choose “Compare Symbol with Contents…” and update the symbol in your
block diagram. You need to do this because you have added ports to this module and
you need to let Aldec add these ports to the symbol for you. You will probably want to
then right-click again and choose “Edit Symbol in Separate Window” in order to put the
outputs in a reasonable-looking place.

You now need to save these condition codes in the condition code registers. Add a new
module called “y86_conditional” to your cpu schematic to hold these registers. Of
course, the only time you save the condition codes is when an OPl instruction is
executed. That is, you will enable these registers only when an OPl instruction is
executed. When you add the 3 registers for the condition codes, add a control signal for
the enable signal, which will be generated by your controller module. Now, whenever
your processor executes an OPl instruction, the condition codes generated by the ALU
will be saved in the condition code registers.

2. Evaluating Conditional Instructions

Now that we have the condition codes saved, we need to use them to execute our
conditional jump and register move instructions. For each of these instructions, we will
either perform the jump/move, or ignore it. This decision is just a (complex) Boolean
function of the instruction and the condition codes. For each of instruction types below,
write the Boolean expression using just the three condition codes. The final decision is
just the OR over all these cases. That is, the jump or move should be performed if any of
these condition code expressions is true. Note that the Y86 instruction set was
conveniently designed so that the jump and move instructions share a single set of
function codes, so the decision can be used for either instruction type.

(You may find the Verilog exclusive-or operator ^ handy.)

B==A ZCC
B!=A
B<A
B>=A
B<=A
B>A

Now that you have the Boolean expression, add a Verilog assign statement to your
y86_conditional module that computes this logic function. Add this signal as an output
of this module.

3. Executing Conditional Moves

Let’s implement the conditional moves first, since they are really just an extension of
the register-register move. In fact, they share the same instruction code. Modify your
y86_controller module to add y86_conditional output signal as an input, and modify the
controller logic so that it writes to the register file when there is a conditional move

instruction and condition is true. This should be a simple extension to the logic you
already have.

4. Test the new instructions
The v2test.zip archive contains unit tests for all the new instructions. You should use
these to test and debug the instructions. You will find it useful to step through the test
program and the Y86 ISA simulator side-by-side. There is a final test program in this
archive called v2testall.ys which rolls up all the tests into one and produces a
signature.

5. Write a program
Now write a program to multiply M x N, where M and N are “input” via irmovl
instructions at the beginning of the program. Run this program on your processor for
the values 13 x 17 and submit the console log after running the simulator.

Turn In

For this assignment, you will be placing a lot of files in the Drop Box. Please put all these
files, including zip files, into a single zip file with your name on it.

1. Run the v2testall.ys test program on your CPU design and turn in a copy of the
console log named v2testallLog.txt via the Drop Box that shows your
simulation run. Please clear the console log before running the simulation so
that the log contains only the one simulation run, and truncate the log so it
doesn’t have lots of halt instructions at the end. The console log file is in the
<project>\log directory.

2. Turn in via the Drop Box a copy of your multiply program (multiply.ys), along
with a copy of the console log for the simulation (multiplyLog.txt).

3. Archive your design as <name(s)>_y86v2.zip and submit it electronically via
the 352 dropbox. Please use the Archive Design command in the Design menu
when preparing your design for submission. If your current design uses blocks
from a previous design, don't forget to add that to your current design that you
submit. When you add existing files to your design, don't forget to check the
"Make local copy" box.

To make sure that the TA will be able to run your design, take the zip file you are
going to submit, create a new workspace and add your design to it. Then, try
running everything. If it doesn't run there, the TA will not be able to grade your
assignment. So it is in your best interest to double check that it runs in a different
workspace before you submit it.

http://www.cs.washington.edu/education/courses/cse352/13sp/labs/lab6/v2test.zip

