

Lab 6 - Y86 Version 2: Adding Conditional

Instructions

To implement the y86 version 2, you will add the conditional jump (JXX) and conditional
move (CMOVXX) instructions to your y86v1 processor. As part of this, you will have to
modify your ALU to generate the condition codes flags and add the condition code
registers to your processor.

Getting Started

It is best to start out with a brand new design for your y86 version 2. To do this, create a
new workspace for your y86v2 with a new empty design. Then, add all your source files
from y86v1 into your y86v2 design. Make sure you choose Make Local Copy when adding
existing files so you actually copy the files to the y86v2 design. Then, you should start by
compiling and testing this new design with your version 1 tests just to make sure you are
starting with a good design.

There are seven branch instructions (JXX) and seven move instructions (CMOVXX) in the
Y86 instruction set that you will now implement. Note that these instructions are quite
similar: jumps test the condition codes to decide whether to change the program counter,
while moves test the condition codes to decide whether to write to the register file.

 <= < == != >= >

jmp jle jl je jne jge jg

rrmovl cmovle cmovl cmove cmovne cmovge cmovg

1. ALU

The first step is to augment the ALU with three 1-bit outputs: ZF (zero flag), SF (sign flag,
for negative results), and OF (overflow flag).

OF should be high if adding or subtracting caused an arithmetic overflow (e.g., an
overflow occurs is adding two positive numbers results in a negative number; what other
cases are there?).

After you have compiled your ALU, right-click on the ALU symbol in your CPU block
diagram, choose “Compare Symbol with Contents…” and update the symbol in your block
diagram. You need to do this because you have added ports to this module and you need
to let Aldec add these ports to the symbol for you. You will probably want to then right-

click again and choose “Edit Symbol in Separate Window” in order to put the outputs in a
reasonable-looking place.

You now need to save these condition codes in the condition code registers. Add a new
module called “y86_conditional” to your cpu schematic to hold these registers. Of course,
the only time you save the condition codes is when an OPl instruction is executed. That
is, you will enable these registers only when an OPl instruction is executed. When you add
the 3 registers for the condition codes, add a control signal for the enable signal, which
will be generated by your controller module. Now, whenever your processor executes an
OPl instruction, the condition codes generated by the ALU will be saved in the condition
code registers.

2. Evaluating Conditional Instructions

Now that we have the condition codes saved, we need to use them to execute our
conditional jump and register move instructions. For each of these instructions, we will
either perform the jump/move, or ignore it. This decision is just a (complex) Boolean
function of the instruction and the condition codes. For each of instruction types below,
write the Boolean expression using just the three condition codes. The final decision is
just the OR over all these cases. That is, the jump or move should be performed if any of
these condition code expressions is true. Note that the Y86 instruction set was
conveniently designed so that the jump and move instructions share a single set of
function codes, so the decision can be used for either instruction type.

(You may find the Verilog exclusive-or operator ^ handy.)

B==A Z00

B!=A

B<A

B>=A

B<=A

B>A

Now that you have the Boolean expression, add a Verilog assign statement to your
y86_conditional module that computes this logic function. Add this signal as an output of
this module.

3. Executing Conditional Moves

Let’s implement the conditional moves first, since they are really just an extension of the
register-register move. In fact, they share the same instruction code. Modify your
y86_controller module to add y86_conditional output signal as an input, and modify the

controller logic so that it writes to the register file when there is a conditional move
instruction and condition is true. This should be a simple extension to the logic you
already have.

4. Test the new instructions
The v2test.zip archive contains unit tests for all the new instructions. You should use
these to test and debug the instructions. You will find it useful to step through the test
program and the Y86 ISA simulator side-by-side. There is a final test program in this
archive called v2testall.ys which rolls up all the tests into one and produces a signature.

5. Write a program
Now write a program to multiply M x N, where M and N are “input” via irmovl instructions
at the beginning of the program. Run this program on your processor for the values 13 x
17 and submit the console log after running the simulator.

Turn In

For this assignment, you will be placing a lot of files in the Drop Box. Please put all these
files, including zip files, into a single zip file with your name on it.

1. Run the v2testall.ys test program on your CPU design and turn in a copy of the
console log named v2testallLog.txt via the Drop Box that shows your simulation
run. Please clear the console log before running the simulation so that the log
contains only the one simulation run, and truncate the log so it doesn’t have lots
of halt instructions at the end. The console log file is in the <project>\log
directory.

2. Turn in via the Drop Box a copy of your multiply program (multiply.ys), along
with a copy of the console log for the simulation (multiplyLog.txt).

3. Archive your design as <name>_y86v2.zip and submit it electronically via the
352 dropbox. Please use the Archive Design command in the Design menu when
preparing your design for submission. If your current design uses blocks from a
previous design, don't forget to add that to your current design that you submit.
When you add existing files to your design, don't forget to check the "Make local
copy" box.

To make sure that the TA will be able to run your design, take the zip file you are
going to submit, create a new workspace and add your design to it. Then, try running
everything. If it doesn't run there, the TA will not be able to grade your assignment.
So it is in your best interest to double check that it runs in a different workspace
before you submit it.

http://www.cs.washington.edu/education/courses/cse352/13sp/labs/lab6/v2test.zip
http://www.cs.washington.edu/education/courses/cse352/13sp/labs/lab6/v2test.zip

