
CSE 352 Tutorial # 4
Synthesizing onto an FPGA

Objectives

This tutorial will walk you through the steps of implementing a design made in Active-HDL onto
the Altera Cyclone II FPGA

NOTE: This tutorial contains many large illustrations. Page breaks have been added to keep
images on the same page as the step that they represent.

Before you start:

Important: You need to make sure that the USB-Blaster Drivers are up to date. This can be done
in less than 30 seconds by following those steps.

Steps

Open up Active-HDL in administrator mode if you’re working on your home machine.
Otherwise, open up Active-HDL normally. Create a new workspace.

Figure 1 – Create a new workspace.

http://www.cs.washington.edu/education/courses/cse352/13sp/tutorials/drivers_instructions.pdf
http://www.cs.washington.edu/education/courses/cse352/13sp/tutorials/drivers_instructions.pdf

When selecting the location for your new workspace, make sure that the path does not contain
spaces. Name your workspace “tutorial4”.

Figure 2 – Name the workspace.

In the new design wizard, select “Create an Empty Design with Design Flow”. Click Next.

Figure 3 - Create an empty design with design flow.

Next, you should see a window as depicted in the screenshot. Make sure that the [Block Diagram
Configuration] is set to use (Default HDL Language), and the [Default HDL Language] is set to
(VERILOG). Click on Flow Settings.

Figure 4 - Set the HDL language, then click on Flow Settings

Under the [HDL Synthesis:] heading you should set the Tool to be (Altera Quartus II Synthesis &
Implementation 12.0), or (Altera Quartus II Synthesis & Implementation 12.1) if you are
working on your own computer. Also you need to set the [Family:] to be (Quartus Cyclone II).
When all of this is done, click [OK] to close the Flow Settings window, and then click [Next >]
on the New Design Wizard to move on.

Figure 5 - Set the HDL Synthesis tool name and the Family.

On this screen, choose an appropriate name for your design (e.g. addsub4). Remember that you
should not begin your names with numbers, or other odd characters. Also your names cannot
contain spaces to avoid problems with software in the future. Click through the rest of the
dialogue boxes until you see that your design has been added to your workspace.

Figure 6 - Set the name of the new design.

Your workspace should look like figure 7. The various icons and buttons on the right-side of the
window is the Design Flow. Active HDL uses it to guide you through the process of synthesizing
and implementing your design onto the FPGA.

Figure 7 - What your workspace should look like right now.

Now that we have created our design we are ready to create the schematic for the Four Bit
Adder/Subtractor that you will synthesize onto the FPGA. This is the same Four-Bit Adder/
Subtractor that you made in Tutorials 1 & 2, starting with the Full Adder and building on that.
You need to recreate those designs using the yellow "Built-In" gates so that you will be able to
synthesize the design on the hardware. Once you have the Four Bit Adder/Subtractor schematic
re-created, continue below.

NOTE: revisit Tutorial 1 and/or Tutorial 2 if you need help designing the circuits.

http://www.cs.washington.edu/education/courses/cse352/13sp/tutorials/Tutorial_1.pdf
http://www.cs.washington.edu/education/courses/cse352/13sp/tutorials/Tutorial_1.pdf
http://www.cs.washington.edu/education/courses/cse352/13sp/tutorials/Tutorial_2.pdf
http://www.cs.washington.edu/education/courses/cse352/13sp/tutorials/Tutorial_2.pdf

Check your Full Adder and Four Bit Adder/Subtractor circuits; do they look like the ones to the
right? It is important that you are using the yellow symbols and not the pink ones because the
pink ones will not synthesize correctly onto the FPGA.

Figure 8 - The full adder circuit. Note the usage of the yellow (built-in) symbols.

Figure 9 - The four-bit addition/subtraction circuit. Note the usage of the yellow (built-in) symbols.

There is one last piece that we need to create before synthesizing onto the FPGA. Since the
FPGA doesn’t know what the various Inputs and Outputs in your design are connected to, we
have to create a (.qsf) file for the FPGA to read and use. If we don’t create one the FPGA will
randomly assign pins to be the outputs and inputs and that could be very bad considering the
FPGA has hundreds of pins. You can think of the (.qsf) like a setting file which you use to inform
the FPGA what pins you want connected to what.

For this lab we want to use the switches, buttons and LEDs for our inputs and outputs. The
reason why we need to assign switches, buttons, and LEDs during the synthesis is because the
old connections you were using is actually a program that was preloaded into the FPGA
redirecting the outputs in and inputs of the switches, LEDs and buttons from their standard inputs
and outputs to the connectors on the board. Of course now that everything is on the FPGA, you
can’t actually wire a connection from those pinouts into the FPGA, so we have to program in our
connections. Luckily for us, the FPGA has pins which are directly connected to the switches,
buttons and LEDs. Creating a (.qsf) file is pretty easy; the FPGA follows a very straightforward
format. For example, the pin connected to Switch 0 is called [PIN_L22], so to assign one of our
inputs to PIN_L22 we use the following:

set_location_assignment PIN_L22 –to A[0]

By using that line of text we have assigned Switch 0 to be the first input of A. If you look at our
design above, you will see that there is A[0] through A[3], so each of those will need a pin
assigned to it. It’s easy because we can directly reference the names we used in our design. Go
ahead and create the (.qsf) file with notepad and save it in the [src] folder of your design.
Remember to use good naming conventions for your file by avoiding numbers and spaces. You
can refer to this file pinouts.html to see what pins are connected to what inputs/outputs on the
FPGA. Make sure you don’t miss any of your inputs and outputs; you should have assignments
for:

INPUTS: A[0], A[1], A[2], A[3], B[0], B[1], B[2], B[3], AddSub
OUTPUTS: Over, S[0], S[1], S[2], S[3]

You can use this (.qsf) file as a template. It is important however that you understand the
assignments.

Now that we have created the final piece needed to synthesize onto the FPGA we can actually
begin the actual process of putting the design onto the FPGA. Go back to the Design Flow that
we saw earlier. There is a quick button at the top of the screen that you can click that will bring
you to the Design Flow as well.

Figure 10 - The highlighted button will show the Design Flow, if it's been closed.

http://www.cs.washington.edu/1999/lab/facilities/hwlab/tutorials/FPGA_Tut/pinouts.html
http://www.cs.washington.edu/1999/lab/facilities/hwlab/tutorials/FPGA_Tut/pinouts.html
http://www.cs.washington.edu/education/courses/cse352/13sp/labs/lab4/addsub4_pinout.qsf
http://www.cs.washington.edu/education/courses/cse352/13sp/labs/lab4/addsub4_pinout.qsf

From here you should click on the [options] button next to [synthesis & implementation] to gain
access to the window where we will set up our configuration for the FPGA.

Figure 11 - The location of the options button.

Once you click on the options button a (Synthesis Options) window will come up. The first thing
to check is to make sure all the important files are selected in the (Design Files) browser on the
left side of the window. For this design we need to make sure the Four Bit Adder/Subtractor will
be included as well as the Full Adder design. You know it’s included when there is a little red
arrow next to the file.

Figure 12 - Include the block diagrams for the full adder and the four-bit adder/subtractor.

Next we need to select the (Top-level Unit), this is the primary design that will be put on the
FPGA. Since we are trying to put the Four Bit Adder/Subtractor on the FPGA we will choose
that as our (Top-level Unit). If we were only synthesizing the Full Adder, we could choose the
Full Adder’s design instead from the drop down menu.

Figure 13 - Set the four-bit adder/subtracter as the top-level unit.

The (Simulation output format) should be None and the (Time Scale) should be 1 ps.

Make sure the (Run Mode) is set to Batch.

Figure 14 - Set the simulation output format and the run mode.

Next under Device Assignment we need to tell the program what kind of FPGA we have. The
(Family) should be Quartus CycloneII, and the (Device) should be EP2C20F484C, this is the
same serial that is written directly on the FPGA chip.

When you change the (Device) the (Speed Grade) should automatically be updated to 6.

Figure 15 - Set the device family, the device itself, and the speed grade.

Finally the last setting that you need to add in is to set up the pin assignment. Check the little box
that says (Input pin assignment from Quartus Settings File) and Browse to the (.qsf) file that you
made and select it. This way the program will use the pinouts that you assigned in the (.qsf) file.

Figure 16 - Set the Quartus Settings File to the file containing your pin assignments.

Now you are all set. Check to make sure the settings are all right and click [OK].

Figure 17 - What your options settings should look like.

Now that everything is all set. Click on the [Synthesis & Implementation] button and let the
program do its work. If everything worked well, the Quartus 12.0 window will pop open and do
all of the necessary work to create a file that you can program onto the FPGA.

Figure 18 - The location of the Synthesis & Implementation button.

Quartus 12.0 should complete successfully with no errors, and only minimal warnings. You will
likely see at least two warnings regarding “Classic Timing Analyzer, it is safe to ignore those.
You should make sure to check any other warnings you receive, and make sure you understand
why they occur. Ask your T.A. for help if you have any questions regarding specific warnings or
errors.

Note: There used to be an odd problem with Active-HDL, where it would throw an error even
when there are no errors. If you see red text in the Active-HDL console stating that Quartus 12.0
finished with errors, but Quartus itself says it did not have any errors, you can safely ignore the
Active-HDL message.

Figure 19 - The output of Quartus. Note that there are a few warnings but no errors.

Great, we now have a file that we can program onto the FPGA board.

Check to make sure the USB cord is fastened securely and plugged into the board. Also, check to
make sure the little switch below the power button is on the RUN side and not the PROG side.
Finally, power on your FPGA board, make sure it runs and is flashing the usual CSE 352 across
the HEX display.

Figure 20 - Make sure this switch is set to RUN.

Click on the [Analysis] button on the Design Flow, and then click on the [Programmer] button.

Figure 21 - The location of the Programmer button. Click Analysis to bring up the menu, then click Programmer.

The Quartus II Programmer will pop up. This is the interface that connects your computer to the
FPGA via the USB. Check to make sure that the Hardware is set up correctly, you should see that
the connection is via (USB- Blaster).

Figure 22 - Check that the hardware setup says USB-Blaster.

If you don’t see this, click on the [Hardware Setup] button and select the connection to be via the
USB-Blaster.

NOTE: If you don’t see the USB-Blaster option, you may need to click the [Add Hardware…]
button and add the USB-Blaster setup. Make sure that USB cord plugged into the board is
plugged into your computer at the other end.

Figure 23 - Set the Currently Selected Hardware to USB-Blaster.

Make sure that the (Mode) is set to (JTAG).

Figure 24 - Set the Mode to JTAG.

Click on the [Add File] button and navigate to your design folder. Under your design folder you
should see a folder called: synthesis.

Figure 25 - Click the Add File... button, and navigate to the synthesis folder.

Select the (.sof) file, this is the programming file that you will load onto the FPGA. Click
[Open].

Note: You have another option which isn't shown in the picture. When you click on the
[Programmer] button under [Analysis] you can click on the little {Options} tag next to the
[Programmer] button to select the programming file ahead of time.

Note 2: Make sure to select the (.sof) file and not the (.pof) file. The latter is used when
programming the flash memory on the DE-1.

Figure 26 - Make sure you select the .sof file!

Now all that is left is to program the file onto your FPGA. Check the little box under [Program/
Configure] and click the [Start] button to program your design onto the FPGA.

Note: You should see the chip ID listed under the chip graphic. This is the same ID as you
selected in the Synthesis Options steps above.

Figure 27 - Click the Start button to program the FPGA.

If the programming went as expected, you should see the green [Progress] bar at 100% at the
upper right and the green “success” message in the bottom portion of the Quartus II Programmer
window. If not, verify your settings and try again. If you continue to have issues, consult your
T.A.

Figure 28 - Success!

If your programming was successful, your DE-1 board should now be running your program
with the Switches, Keys, and/or LEDs that you selected in the (.qsf) file.

Try it out!

