
CSE352 Autumn 2013 Homework #6

Instructor: Mark Oskin
TAs: Vincent Lee, Mark Wyse

Due In Class 11/25/2013
Version 1.3

Please write your name and student ID at the top right corner of each page, and
staple or paperclip your work together. We are NOT responsible for losing papers
that were not stapled or paperclipped together.

Complete the following questions. Please write legibly and try to draw clean
diagrams. Spaghetti wiring in circuit diagrams is difficult to grade. We will not
grade work that is too heavily encrypted for us to read (i.e. we can’t read it, we
can’t grade it). Please consider typesetting your work if you think that it may not
be legible to the grader. You are encouraged to collaborate with your peers but you
must turn in your own work. Justice will be enforced if you are caught cheating.

Schematics for the circuits can be found at the end of the problem set for your
convenience to save you from redrawing the whole circuit.

You have the option to attempt either problem 1 xor problem 2; whichever problem
you find more interesting. Problem 3 through 5 must all be completed.

Problem 1 Accumulator Based Processor

Consider the above 32-bit accumulator based processor. Because we only have
one register, we no longer need to specify source, target, or destination registers since
all instructions implicitly refer to the Acc register. Instructions are 32 bits wide and
contain an opcode field, and an immediate field. You may assume that the memory is

Problem 1 2

asynchronous read and is byte addressed. The ALU performs eight possible operations
as shown in the table below:

Op OP CODE
ADD 0b000
SUB 0b001
SRL 0b010
SLL 0b011
OR 0b100
AND 0b101
XOR 0b110
PASS B 0b111

The PASS B operation simply passes the lower value through the ALU.

(a) Suppose the instruction set for this architecture will contain a maximum of 20 in-
structions. How many bits should be allocated for the opcode field and immediate
field?

(b) Consider the following instructions:

Instr RTL Summary
ADD X Acc ← Acc + X Adds the immediate X
LOAD X Acc ← Mem[X] Loads memory location X
STORE X Mem[X] ← Acc Stores to memory location X
JR PC ← Acc Sets current PC to register value

For each of these instructions, define the values for the control signals BRANCH,
OPERAND, OP CODE, MEM WR, and REG EN.

(c) (Extra Credit) Now assume you have the following more complete set of instruc-
tions already defined for you. Assume that unless otherwise specified, each RTL
has expression also has PC ← PC + 4 as the default case for the PC register.

Instruction RTL Summary
ADD X Acc ← Acc + X Adds the immediate X
SUB X Acc ← Acc - X Subtracts the immediate X
LOAD X Acc ← Mem[X] Loads memory location X
STORE X Mem[X] ← Acc Stores to memory location X
CLEAR Acc ← 0 Clears Acc
SRL X Acc ← Acc >> X Logical right shift
SLL X Acc ← Acc << X Logical left shift
SRA X Acc ← ACC >>> X Arithmetic right shift
J X PC ← X Jump to target PC
JR PC ← Acc Sets current PC to register value
LOADPC Acc ← PC Copies current PC to Acc
JMEM X if (ZERO) PC ← Mem[X] Sets PC to Mem[X] if Acc is zero
ADDM X Acc ← Acc + Mem[X] Adds Mem[X] to Acc
SUBM X Acc ← Acc - Mem[X] Subtracts Mem[X] from Acc

CSE352 PS #6

Problem 2 3

Using these instructions, write a function MULT that multiplies two numbers A

and B together. Assume that A is stored at address 0x00000000 and B is stored at
address 0x00000004. You may not use labels in your code. Put the final value at
memory location 0x00000008. You may assume use any other memory locations
as scratch space. When you finish the computation, assume the return address
is stored in 0x00001000.

(d) Suppose we wanted to implement an instruction SWAPPC which has the following
RTL specification: PC← Acc; Acc← PC. Given the current architecture, is this
instruction possible to implement without additional hardware? If so, give the
control signal values that implement this instruction. If not, modify the diagram
to accomodate this new instruction.

(e) Notice that the instruction set wastes a lot of space when immediates fields are
not used. For instance, the LOADPC instruction only requires the Opcode field
and hence does not require the entire 32 bit instruction width to be expressed.
One way to recover the wasted space and increase code density is to use variable
width instructions. Briefly describe what modifications would need to be made
to the original architecture to implement this optimization.

(f) Ben Bitdiddle and Alyssa P. Hacker are working on optimizing their accumulator
circuit. Alyssa points out that it is possible to eliminate memory addressing
by replacing the memory with a stack circuit and converting the LOAD X and
STORE X instructions to POP and PUSH respectively. Assume the stack circuit
has a control input Push that when asserted, pushes Din to the stack, and an input
Pop that when asserted, pops a values from the top of the stack; also assume that
Dout is the value at the top of the stack and the stack is synchronous write.
Unfortunately replacing the data memory with a stack severely nerfs (decreases)
the power of our instruction set in several ways. Explain in what ways this
”optimization” reduces the power of our instruction set architecture. (Hint: is it
still possible to perform a multiplication?)

Problem 2 Single Cycle Processor

Consider the above single cycle processor. For each of the following instructions,
propose modifications to the processor to implement each of the following instructions.
If you need extra control signals, define them and specify when the control signal is

CSE352 PS #6

Problem 2 4

asserted. If you do not need to modify the processor, list the values of the control
signals that would implement the specified instruction.

(a) The instruction JMEM that sets the PC to a location in memory and has the
following specification:

Instruction RTL
JMEM $sr, IMM PC ← Mem[$sr + IMM]

(b) The instruction SWINC which takes the value in the register rs, increments the
value, and stores it to a memory location. In addition, it takes the old value at
the target memory location, and loads it to the register rs.

Instruction RTL
SWINC rs, offset (rt) rs ← Mem[rt + offset]; Mem[rt + offset] ← rs + 1

(c) The a instruction TSET, which implements a variation of the test and set oper-
ation. The instruction takes the value of a location in memory, tests if it is zero,
then sets it to one. The instruction also sets the register rs to one if it succeeds,
otherwise it sets rs to zero.

TSET rs, offset (rt)

if (Mem[rt + offset] == 0) Mem[rt + offset] ← Mem[rt + offset] + 1; rs ← 1
else rs ← 0

(d) Now assume that our data memory is now shared between four processor cores.
Suppose each core tries to increment the value x at memory location 0x40000000
ten times each such that when all the cores finish, x is now x + 40. Running
the following code on each core works only once in a while. What is wrong with
it? Using the TSET instruction, fix the code such that the execution yields the
correct result every time. You may assume the memory location 0x40000008 is
available for you to use.

add $t0, $0, $0

lui $t0, 0x4000

addi $t1, $0, 10 //i = 10

lw $t2, 0 ($t0)

loop: add $t2, $t2, 1 //perform increment

addi $t1, $t1, -1 //i--

bne $0, $t1, loop //i != 0

sw $t2, 0 ($t0)

You may also assume that if multiple cores attempt to perform a memory oper-
ation on the same cycle, all memory operations for a core will occur atomically
(i.e. all memory operations for core 1 execute before all memory operations for
core 2, etc. on a given cycle).

CSE352 PS #6

Problem 3 5

(e) Suppose TSET was actually a pseudo instruction (implemented using several
smaller instructions) and therefore not an atomic operation. Does your solution
to the previous part still work? Why or why not? If not, give one scenario where
it won’t work.

Problem 3 Memory Mapped I/O

Suppose our processor is communicating with a UART module using a ready valid
protocol and memory mapped I/O. To implement the ready valid protocol, we use
the following memory map to communicate with the UART:

Address Value
0x80000000 UART data valid signal (Read Only)
0x80000004 UART data ready signal (Write Only)
0x80000008 UART data

You may assume that when both the data valid, and data ready signals are both
asserted that the handshake occurs, and the data ready signal is reset to zero.

(a) Ben Bitdiddle is trying to write a program that polls the valid signal until it is
asserted, reads the data, sets the valid bit, and returns the data it read. He comes
up with the following C code but it only works some of the time. Under what
circumstances does his program work? When doesn’t his program work?

int *valid = (int *) 0x80000000;

int *data = (int *) 0x80000008;

while (*valid != 1);

int *dout = data;

int *ready = (int *) 0x80000004;

*ready = 1;

return *dout;

The code compiles into the following assembly:

add $t0, $0, $0

addi $t2, $0, 1

lui $t0, 0x8000

lw $t1, 0 ($t0)

loop: bne $t2, $t1, loop

lw $v0, 8 ($t0)

sw $t2, 4 ($t0)

jr $ra

CSE352 PS #6

Problem 5 6

(b) Look up what the volatile keyword does in C. Modify the C code from the
previous part to use volatile variables where necessary and rewrite the assembly
to reflect the modification. Explain why adding volatile variables where you
did fixes the program.

(c) Suppose the address space 0x8xxxxxxx corresponded to memory owned by the
kernel. If the above program is run in the user space, what will happen to the
program execution?

Problem 4 Caches

For each of the following cache specifications, determine the number of tag bits, offset
bits, and index bits. Also indicate how many bits should be allocated for metadata
within the cache such as valid and dirty bits. For this problem, one word is 4 bytes.

(a) An 8 KB fully associative, write through cache with 16 word lines for a processor
using a 32 bit address space.

(b) A 1 MB direct mapped, write back cache with 8 word lines for a processor using
a 64 bit address space.

(c) A 256 MB 8 way set associative, write back cache with 32 word lines for a pro-
cessor using a 128 bit address space.

(d) Consider a 1 KB direct mapped cache that uses a write through, write-allocate
policy using 64 word cache lines. Fill out the following table for the given memory
access pattern and indicate which data is in the cache. Cache entries that are not
valid can be left blank. Assume all memory access addresses are byte addressed.

Address Read/Write Set 0 Tag Set 1 Tag Set 2 Tag Set 3 Tag Hit?
0x1004 Read 0x04 No
0x1204 Read 0x04 0x04 No
0x105C Write 0x04 0x04 Yes
0x4040 Write
0x3C38 Read
0xC200 Write
0x1240 Read
0x1280 Read
0x4F48 Write

Problem 5 Feedback

On the following scale of ROFL to FML, how difficult were the following assignments.
The full dynamic range from ROFL to FML is given below:

CSE352 PS #6

Problem 5 7

ROFL LOL TROLOL MEH UGH OMG OMFG WTF OMGWTF FML

• HW1

• HW2

• HW3

• HW4

• HW5

• HW6 (this one)

• The Midterm

• Lab 6

CSE352 PS #6

Problem 5 8

A
cc

u
m

u
la

to
r

B
as

ed
P

ro
ce

ss
or

CSE352 PS #6

Problem 5 9

S
in

gl
e

C
y
cl

e
P

ro
ce

ss
or

CSE352 PS #6

