QI: Hक्ष 4.2.
Part a
First, we will want to write out a frith table from the if-else logic. We will use $X$ to denote don't care, as in the case of, if a $[0]$ is high, we doit care what any other input is, but we know $y$ will be, $y[1: 0]=11$. This helps simplify our teth table substantially.

| inputs |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| atputs |  |  |  |  |  |  |  |  |
| $a[0]$ |  |  |  |  |  |  |  |  |
| $a$ |  |  |  |  |  |  |  |  |$|$

$\rightarrow$ this final case is the default statement, and in this case $a[1: 0]$ is 0,0 , which gives our $y$ values.
If we had gone into K-maps you could step through to prove the optimal result, but we can readily see it here,
First consider y $[1]$,
its simplified with $\Rightarrow$
table is

| $a[0]$ | $a[1]$ | $a[2]$ | $a[3]$ | $y[1]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $x$ | 0 | 0 | 1 |
| 0 | 1 | $x$ | $x$ | 1 |
| 0 | 0 | $x$ | $x$ | 0 |

$\uparrow \uparrow$
We see that $y[1]$ is only high if $a[0] \stackrel{O}{=} a[1]$ are high, $y[1]$ is only Low if acc] and aCT] are low.
Therefore, $a[0]$ Completely describes the behavior in $a[1]-y[1]$ the Veritlog code for $y$ [1].

Now, doing the same for $y[0]$,

| $a[0]$ | $a[1]$ | $a[2]$ | $a[3]$ | $y[0]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $x$ | $x$ | $x$ | 1 |
| 0 | 1 | $x$ | $x$ | 0 |
| 0 | 0 | 1 | $x$ | 1 |
| 0 | 0 | 0 | $x$ | 0 |

We see $y[0]$ is 1 only when $a[0]$ is high or when $a[2]$ is high and $a[1]$ is low.
We have to specify the and when $a[1]$ is low because if $a[1]$ is high then $y[0]$ should be low and we want to reflect that in our logic. We don't have to specify for a[0] or a[3] in this case because we don't care, as they don't alter the highy[0] when $a[2]$ is high.
Then,


So combining it all gives the verilog if statement,

$a[3]$ $\square$ dost care
GND a[3] doesint effect anything.

Q1 part b.
Specify the pinout for our made up 7 segmentdisplyy Let's say we have Led $[6: 0], 7$ bits, each corresponding to a single segment, where setting it high turns on the segment, and low turns it off.
led [o]
Ledt5] $\left.\right|_{\text {Led [6] }} \mid \operatorname{led}[1]$


Now we assign values in a lookup case statement For our 4-bit input, $a[3: 0]$, representing the input $O-F$, to make unique representations,
use lower case $b, \sqsubset, \forall$ and upper case for $A, E, F$.
Veritog next page.

## Q1b)

```
module display(
    input [3:0]in,
    output [6:0]out);
    //for pins,
    //a[0] is top a[1] is top right a[2] is bottom right
    //a[3] is bottom a[4] is bottom left a[5] is top left
    //a[6] is center
    //b'1 is high for pin
    //b'0 is low
    //Decoder will implement as combo logic
    assign out = (in == 4'h0) ? 7'b011_1111 :
        (in == 4'h1) ? 7'b000_0110 :
        (in == 4'h2) ? 7'b101_1011 :
        (in == 4'h3) ? 7'b100_1111 :
        (in == 4'h4) ? 7'b110_0110 :
        (in == 4'h5) ? 7'b110_1101 :
        (in == 4'h6) ? 7'b111_1101 :
        (in == 4'h7) ? 7'b000_0111 :
        (in == 4'h8) ? 7'b111_1111 :
        (in == 4'h9) ? 7'b110_1111 :
        (in == 4'hA) ? 7'b111_0111 :
        (in == 4'hB) ? 7'b111_1100 :
        (in == 4'hC) ? 7'b010_0111 :
        (in == 4'hD) ? 7'b101_1110 :
        (in == 4'hE) ? 7'b111_1001 :
        (in == 4'hF) ? 7'b111_0011 : 7'b000_0000;
```

endmodule

Q2:
For the circuit below, assume that all gates have the same delay (including inverters) of 5 ns , complete the timing diagrams.


Q3: Complete the timing diagram for the circuit below for 10 clock cycles. Is the reset signal active low or active high? Active low
You have learned from class that this circuit is a crucial component in sequential logic design. What is it and why do you think it might be useful? This is a DFF, a main component in building registers, state machines and ALU.


