

CSE 351 Summer 2025, Midterm Exam II​
July 31, 2025

​
Instructions:

●​ Do not turn the page until you are instructed to begin.
●​ This exam is closed book (no smartphones, calculators, or other electronic devices). Turn off any

mobile devices, remove hats, headphones, and smartwatches, and put them away.
●​ You are allowed one page (U.S. letter, double-sided) of handwritten notes. Write your name and

NetID on your notes page and turn it in with your exam.
●​ This exam contains 4 problems and 1 bonus question spread across 6 pages. The last page is a

reference sheet. You may detach it from the rest of the exam.
●​ When a box or line is provided, please write your answer in the box or on the line.
●​ If a question involves bubbling in a ◯, please fill the shape in completely.
●​ You have 60 minutes to complete this exam. Please stop writing when the clock stops. ​

Advice:
●​ Read questions carefully before starting. Make sure you understand what they're asking!
●​ Don't spend too much time on any one problem. If you find yourself getting stuck, skip around.

Make sure you get to all the questions.
●​ Relax! You are here to learn :)

Full Name:

UW NetID: @uw.edu

Seat Number:

I certify that all work is my own. I had no prior
knowledge of exam contents nor will I share the
contents with any student in CSE 351 who has not
yet taken the exam. Violation of these terms may
result in a failing grade.

Signature:

Question 1 2 3 4 5 Total

Points 12 14 8 16 1 51

Page 2 3 4 5 6

Name: ___________________________ UW NetID: _____________

1.​ (12 points) Arrays, Structs, & Buffer Overflow

We define the following struct representing a cat:

​ typedef struct {
​ int age;
​ char name[11];
​ Cat* best_friend;
​ short fluffiness;

​ ​ } Cat;

(a)​ (6 points) How large is an instance of a Cat in bytes? How many bytes of internal and
external fragmentation are there?

Size: Internal: External:

The next two questions ask about an instance of Cat called lal. Assume that we have allocated
lal somewhere on the stack.

(b)​ (2 points) Suppose we allocate a char[] buf on the stack, such that buf is 24 bytes below
lal. That is, &buf + 24 = &lal.

Fill in the blank in the following C code so that it correctly sets lal.best_friend equal
to the NULL pointer, without changing lal.fluffiness. (Other fields in lal may be
modified.)

for (int i = 0; i < ________; i++) {
 buf[i] = 0;
}

(c)​ (4 points) Now suppose we want to set lal.best_friend to point to the address ​
0x1234 5678 CAFE F00D. Fill in the contents of a char[] new_friend with the
minimum-length exploit string so that after the following code runs, lal.best_friend
= 0x1234 5678 CAFE F00D.

char* friend_ptr = (char*)&(lal.best_friend);
​ for (int i = 0; i < sizeof(lal.best_friend); i++) {

 friend_ptr[i] = new_friend[i];
}

Write each element of new_friend as a hex byte, e.g., FF or 30, one per box. No need to
include prefixes. You may not need to use all of the boxes. Leave any unused boxes blank.

char new_friend[] = {

};

2

Name: ___________________________ UW NetID: _____________

2.​ (14 points) Assembly & C

Consider the following x86 assembly, which implements a mysterious function:

 mystery:
1 movl $0, (%rdi)
2 movl $0, %edx
3 jmp .L2
 .L3:
4 movsbl %sil, %eax
5 orl (%rdi), %eax
6 movl %eax, (%rdi)
7 shll $8, %eax
8 movl %eax, (%rdi)
9 addl $1, %edx
 .L2:
10 cmpl $3, %edx
11 jle .L3
12 ret

(a)​ (8 points) Fill in the C code so that the assembly above correctly implements mystery():

void mystery(________ a, char b) {

 ________ = 0;

 for (int i = 0; i ________; i++) {

 *a = *a | ________;

 *a = *a << 8;
 }
}

(b)​ (4 points) Could we replace the cmp on line 10 with a test instruction, without adding or
changing any other instructions? If so, give an example. Explain in 1 – 2 sentences.

◯ Yes​ ​ ◯ No

Explain:

(Question continues on the next page.)

3

Name: ___________________________ UW NetID: _____________

(c)​ (2 points) In 1 – 2 sentences, describe what mystery() does at a high level (not
line-by-line).

​

3.​ (8 points) ISA Design

Your course staff decide that x86 is far too complicated, and they set out to design a much simpler
ISA to replace it: Simple86. Instead of 16 registers that can all contain values of 8 bytes or less,
Simple86 will have two sets of registers: 10 registers that can only contain 8-byte values, and 12
registers that can contain values of 4 bytes or less.

(a)​ (4 points) Name one disadvantage of the new register design in Simple86. Explain your
answer in 1 – 2 sentences.

The CSE 351 team decides that Simple86 needs to be even simpler. Now it will only have four
general-purpose registers, all of which can hold 8-byte values or less: %rax, %rsp, %rbp, and
%rdi. Assume Simple86 also still has the program counter, %rip.

(b)​ (4 points) Can we reimplement all our existing x86 programs with just the registers above?
Explain why or why not in 1 – 2 sentences.

◯ Yes​ ​ ◯ No

Explain:

4

Name: ___________________________ UW NetID: _____________

4.​ (16 points) Stack & Procedures

Consider the recursive function foo():

int foo(int x, int y) {
 if (x > y) {
 return 0;
 } else {
 return x + foo(x << 1, y);
 }
}

​ Here is some disassembly implementing foo() (all addresses are in hex):

0000000000401129 <foo>:
 401129: 39 f7 cmp %esi,%edi
 40112b: 7e 06 jle 401133 <foo+0xa>
 40112d: b8 00 00 00 00 mov $0x0,%eax
 401132: c3 retq
 401133: 53 push %rcx
 401134: 89 fb mov %edi,%ecx
 401136: 8d 3c 3f lea (%rdi,%rdi,1),%edi
 401139: e8 eb ff ff ff callq 401129 <foo>
 40113e: 01 d8 add %ecx,%eax
 401140: 5b pop %rcx
 401141: c3 retq

(a)​ (6 points) Suppose we call foo(3, 10) from main(). Using the disassembly above, fill
in the contents of the stack at its deepest point (i.e., when the largest number of items have
been pushed to the stack, and none of them have been popped yet).

If you do not know the value of an entry, write "unknown". Leave unused entries (where
nothing has been pushed to the stack) blank. Write all values in hex, and omit leading zeros.

Stack address Contents

0x7fffffffdff8 <return address to main>

0x7fffffffdff0 0x

0x7fffffffdfe8 0x

0x7fffffffdfe0 0x

0x7fffffffdfd8 0x

0x7fffffffdfd0 0x

0x7fffffffdfc8 0x

5

Name: ___________________________ UW NetID: _____________

(b)​ (2 points) Referring to the same execution of foo(3, 10) as above, what are the contents
of the registers %rdi and %rcx just before the first call to foo(3, 10) restores the
original value of %rcx by popping it off the stack? Write all values in hex. Be sure to use the
correct bitwidth, including leading zeros.

%rdi 0x

%rcx 0x

(c)​ (2 points) Notice that in the disassembly above, the callq instruction calls foo by the
function's address, 0x401129, rather than with a label. At what point in building this
executable were we able to determine foo's final address?

◯ Compilation ◯ Assembling ◯ Linking ◯ Loading

(d)​ (4 points) This disassembly violates one of our conventions! Which convention is being
violated? Explain your answer in 1 – 2 sentences.

◯ Stack discipline ◯ Register-saving ◯ Argument-passing

Explain:

(e)​ (2 points) There are multiple ways we can fix this problem, but one way would be to replace
a register we're currently using with a different one. Which register should we replace, and
with what other register? Answer with the names for the full 64-bit versions of each register.

Old register: New register:

5.​ (1 point) What are the names of Alexandra's other two cats? Hint: They share a theme with
Lal's name!

 and

6

	CSE 351 Summer 2025, Midterm Exam II​July 31, 2025
	1.​(12 points) Arrays, Structs, & Buffer Overflow
	2.​(14 points) Assembly & C
	
	3.​(8 points) ISA Design
	
	4.​(16 points) Stack & Procedures
	5.​(1 point) What are the names of Alexandra's other two cats? Hint: They share a theme with Lal's name!

