

CSE 351 Summer 2025, Final Exam​
August 22, 2025

​
Instructions:

●​ Do not turn the page until you are instructed to begin.
●​ This exam is closed book (no smartphones, calculators, or other electronic devices). Turn off any

mobile devices, remove hats, headphones, and smartwatches, and put them away.
●​ You are allowed one page (U.S. letter, double-sided) of handwritten notes. Write your name and

NetID on your notes page and turn it in with your exam.
●​ This exam contains 5 problems and 1 bonus question spread across 7 pages. The last page is a

reference sheet. You may detach it from the rest of the exam.
●​ When a box or line is provided, please write your answer in the box or on the line.
●​ If a question involves bubbling in a ◯, please fill the shape in completely.
●​ You have 60 minutes to complete this exam. Please stop writing when the clock stops. ​

Advice:
●​ Read the questions carefully before starting. Make sure you understand what they're asking before

you start working on them!
●​ This is a long exam! There are plenty of opportunities to show what you've learned. Don't spend

too much time on any one problem, skip around, and make sure you have the chance to attempt
all the questions.

●​ Relax! You are here to learn :)

Full Name:

UW NetID: @uw.edu

Seat Number:

I certify that all work is my own. I had no prior
knowledge of exam contents nor will I share the
contents with any student in CSE 351 who has not
yet taken the exam. Violation of these terms may
result in a failing grade.

Signature:

Question 1 2 3 4 5 6 Total

Points 6 11 10 13 10 1 51

Page 2 3 4 5 6 7

Name: ___________________________ UW NetID: _____________

1.​ (6 points) Processes

Consider the C function foo():

void foo() {
 int x = 2;
 int y = 0;
 int* p = malloc(sizeof(int));
 *p = 0;

 while (y < x) {
 if (fork()) {
 y = 100;
 }
 printf("x%d ", x);
 *p += x;
 x--;
 }

 printf("p%d ", *p);
 free(p);
}

(a)​ (2 points) How many processes are created when we run foo(), including the original
(parent) process?

(b)​ (4 points) Is it possible for foo() to produce the output "x2 x2 p2 p3 x1 p3 x1"?

Explain why or why not in 1 – 2 sentences.

◯ Yes​ (Possible) ◯ No (Impossible)

Explain:

2

Name: ___________________________ UW NetID: _____________

2.​ (11 points) Caching

We run the C code below on a system with the following parameters:

●​ 8 KiB physical address space
●​ 512 B cache size
●​ 2-way set associativity
●​ 16 B cache blocks
●​ Write-back, write-allocate

struct AB {
 long a;
 char b;
};

struct AB X[16]; // X starts at address 0x0800

// ...initialize X...

for (int i = 0; i < 16; i += 2) {
 X[i].a = X[i].a + X[i].b;
 X[i].b = X[i+1].b + 1;
}

(a)​ (4 points) Give the address size and TIO breakdown for this system:

Address bits: __________​ ​ ​ ​ Tag bits: __________

Index bits: __________​ ​ ​ ​ Offset bits: __________

(b)​ (4 points) What is the miss rate of the code above? Ignore any code not shown. Assume that
the cache starts cold (empty) and i and j are stored in registers. For partial credit, you may
optionally provide the access pattern of this code.

Miss rate: ____________

Optional access pattern for partial credit (you may not need all boxes):

Address:

Hit/Miss:

Address:

Hit/Miss:

(Question continues on next page.)

3

Name: ___________________________ UW NetID: _____________

(c)​ (3 points) For each of the following changes, would the miss rate increase, decrease, or stay
the same? For each change, assume all other parameters stay the same.

(i)​ Change the cache associativity to direct-mapped

◯ Increase ◯ Decrease ◯ Stay the same

(ii)​ Increase the block size to 32 B

◯ Increase ◯ Decrease ◯ Stay the same

(iii)​ Change the write-miss policy to no-write-allocate

◯ Increase ◯ Decrease ◯ Stay the same

3.​ (10 points) Java & C

(a)​ (6 points) For each of C and Java, indicate whether each operation below is Possible; ​
Impossible, meaning you could never compile a program that attempts the operation; or an
Error, meaning that the operation can be attempted, but will always result in a runtime error.

(i)​ Index past the bounds of an array.

C: ◯ Pos. ◯ Imp. ◯ Err. Java: ◯ Pos. ◯ Imp. ◯ Err.

(ii)​ Dereference the null pointer.

C: ◯ Pos. ◯ Imp. ◯ Err. Java: ◯ Pos. ◯ Imp. ◯ Err.

(iii)​ Get the address of an int field in an instance of a C struct/Java Object.

C: ◯ Pos. ◯ Imp. ◯ Err. Java: ◯ Pos. ◯ Imp. ◯ Err.

(b)​ (4 points) You've been hired to consult on the login module for a new Linux app. The module
will involve reading user input, comparing it against a stored password, and maintaining the
user's login state in dynamic memory.

Your employer wants to know whether they should use C or Java to write the module. Which
language do you tell them they should pick? Explain your answer by referring to the tradeoffs
between C and Java, and give one disadvantage of this choice.

4

Name: ___________________________ UW NetID: _____________

4.​ (13 points) Virtual Memory & the Memory Hierarchy

Consider a system with the following parameters:

●​ 64 KiB virtual address space
●​ 11-bit physical addresses
●​ 256 B pages
●​ A 4-entry direct-mapped TLB with LRU replacement

(a)​ (4 points) Fill in the following values:

Page offset bits: __________​ ​ ​ VPN bits: __________

TLB index bits: __________​ ​ ​ TLB tag bits: __________

(b)​ (9 points) Assume that the TLB and page table begin in the state shown below:

Set TLBT Valid PPN Set TLBT Valid PPN

0 0b10 1010 0 0x4000 2 0b11 1111 1 0x10AA

1 0b00 1000 1 0x5008 3 0b00 0110 0 0x3801

Partial page table:

VPN PPN Valid VPN PPN Valid

0x21 0x5008 1 0xA8 0x4000 0

0x50 0x12CC 1 0xC1 0x3FF0 1

Fill in the table below with the results of each virtual memory access in the sequence. Each
access occurs after the access(es) before it. If a given box cannot be determined, write "ND".

Access TLB hit? (Hit/Miss) Page Fault? (Y/N) PPN (in hex)

Read 0xA800

Read 0xC140

Read 0x21BB

5

Name: ___________________________ UW NetID: _____________

5.​ (10 points) Dynamic Memory Allocation & Memory Bugs

Consider the following C code:

1 long* ptrs[6];

2 for (int i = 0; i < 6; i++) {
3 if (i%2 != 0) { // i is odd
4 ptrs[i] = malloc(sizeof(long)*i);

5 } else {
6 ptrs[i] = ptrs[i - 1];
7 *(ptrs[i]) = i;
8 }
9 }

10 for (int j = 0; j < 6; j++) {
11 free(ptrs[j]);
12 }

(a)​ (4 points) The code above contains at least two memory-related bugs! Identify two of these
bugs, making sure to reference the line(s) of code where they occur.

You do not need to use the exact wording from lecture for each type of bug, but it should be
clear what problem you're describing. The order in which you give the bugs does not matter.
You also do not need to say how to fix each bug.

First bug:

Second bug:

(Question continues on next page.)

6

Name: ___________________________ UW NetID: _____________

(b)​ (6 points) Suppose that our heap allocator uses an explicit free list like the one from Lab 5:
8-byte alignment, a one-word header, and a one-word footer that may be overwritten in
allocated blocks. Assume also that the heap is initially empty, and that it uses a first-fit
allocation strategy.

The C code on the previous page calls malloc() three times. For each call, how large is the
allocated heap block, and how much of that block is internal fragmentation (all in bytes)?

 Heap block size Internal fragmentation

First malloc():

Second malloc():

Third malloc():

6.​ (1 point) What has been your favorite topic in CSE 351 this summer?

7

Name: ___________________________ UW NetID: _____________

This page left intentionally blank.

8

	CSE 351 Summer 2025, Final Exam​August 22, 2025
	1.​(6 points) Processes
	
	2.​(11 points) Caching
	
	3.​(10 points) Java & C
	
	4.​(13 points) Virtual Memory & the Memory Hierarchy
	
	5.​(10 points) Dynamic Memory Allocation & Memory Bugs
	6.​(1 point) What has been your favorite topic in CSE 351 this summer?

