
CSE 351 Spring 2025 Final Exam
Name: ______Sample Solution______________

UW NetID: _________________________(@uw.edu)

Instructions:

●​ You have 110 minutes for this exam. Don’t spend too much time on any one problem!
●​ The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile

phones).
●​ The last page is a reference sheet. Feel free to detach it from the rest of the exam.
●​ When a box or line is provided, write your answers in the box or on the line provided.

●​ For answers that involve bubbling in a or , make sure to fill in the shape completely.

●​ Relax and take a few deep breaths. You’ve got this! :-).

Question #/Topic/Points​ ​ ​ ​ ​ ​ ​ ​ ​ Page #​
Q1: Caching and Code (6 pts)​ 2
Q2: Caching and Bits (8 pts)​ 4
Q3: Processes (8 pts)​ 6
Q4: Virtual Memory (11 pts)​ 8
Q5: Memory Puzzles (11 pts)​ 10
Q6: Memory Allocation (3 pts)​ 11
Q7: C and Java (6 pts)​ 12
Q8: Assembly Fun (6 pts)​ 13
Q9: Pointers & Memory (9 pts)​ 14

Total: 68 points

Q1: Caching and Code (6 pts)
You are using an x86-64 processor with 128 KiB of Physical address space. You have a direct
mapped cache with a total size of 256 bytes and a cache block size of 16 bytes. The cache
uses LRU replacement and write-allocate and write-back policies.

Assume that in main memory, array A starts at address 0x0 and array B starts immediately
afterwards. Arrays A and B contain 1024 elements each. Assume that both A and B have been
initialized to contain values. Assume that i is in a register and that the cache is initially empty at
the start of the function.

#define STEP 2
#define SIZE 1024
int func(int A[], int B[]) {
 for (int i = 0; i < SIZE; i += STEP){
 A[i] = A[i] + i;
 B[i] = B[i] + i;
 A[i] = A[i] + i * i;
 }
}

a) (2 pts) Give the miss rate (as a simplified fraction or a %) for the
code above: ​

The step is 2 * 4 bytes/int = 8 bytes. Therefore, 2 iterations will access
the same blocks of A and B. The access pattern is:
A[0]: RM, WH
B[0]: RM, WH (evict A[0] block)
A[0]: RM, WH (evict B[0] block)
A[2]: RH, WH,
B[2]: RM, WH (evict A[2] block)
A[2]: RM, WH (evict B[2] block)
- end of block -
=> 5 misses out of 12 accesses

2

5/12

Q1 (continued)

b) (4 pts) For each of the changes proposed below, indicate how it would affect the miss rate of
the code shown above assuming that all other factors remained the same as they were in the
original problem. Select one of: “increase”, “no change”, or “decrease”.

i) Change Associativity to 2​ ​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Accesses to conflicting elements of A and B will no longer kick each other out

ii) Change STEP to 1​ ​ ​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Reduces cold misses from moving on to a new block

iii) Change Cache size to 512 bytes​ ​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

We did not have capacity problems, so this will have no impact

iv) Change Block size to 8 bytes​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Increases cold misses, as every iteration will be a new block

3

Q2: Caching and Bits (8 pts)
You are given a cache with the following parameters:

Cache size: 512 bytes
Block size: 16 bytes
Associativity: Direct Mapped
Physical Address width: 15 bits
Cache Policies: write-allocate, write-back, LRU replacement

a) (2 pts) Give the number of bits needed for each of these:

Cache Block Offset: _____4_____ Cache Tag: _____6_____

b) (1 pt) How many sets does the cache have? _____32______

c) (1 pt) We define tag overhead as a comparison of the total combined tag and management
bits, to the cache size in bytes:

 𝑡𝑎𝑔 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑔 𝑏𝑖𝑡𝑠 + 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑏𝑖𝑡𝑠
𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑏𝑦𝑡𝑒𝑠

The cache described above uses 2 management bits (valid, dirty). Calculate the tag overhead of
the cache, in terms of bits per byte of cache, leaving your answer as a simplified fraction:

​ ​ ​ ​ ​ ​ ​ ​ Tag Overhead in bits per byte:

1/2

32 sets * (6 tag bits + 1 valid bit + 1 dirty bit) = 256 bits
=> 256 bits/512 bytes = 1/2

4

Q2 (continued)

d) (4 pts) For each of the changes proposed below, indicate how it would affect the tag
overhead of this cache assuming that all other factors remained the same as they were in the
original problem. Select one of: “increase”, “no change”, or “decrease”.

i) Change Associativity to 2​ ​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Decreases index bits => increases tag bits

ii) Change Physical Address width to 12 bits​​ ​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Decreases tag bits

iii) Change Write-hit policy to Write-through​ ​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Eliminates dirty bit

iv) Change Block size to 8 bytes​ ​

 Increase​ ​ ​ ​ No Change​ ​ ​ Decrease

Decreases offset bits => increases index bits, tag stays the same, but total number of blocks
goes up.

5

Q3: Processes (8 pts)
01 void sunny() {
02 int x = 0;
03 printf("A ");
04
05 if (fork() == 0) {
06 x += 1;
07
08 printf("B ");
09 if (fork() == 0) {
10 x += 2;
11 printf("C ");
12 } else {
13 wait();
14 x -= 1;
15 printf("D ");
16 }
17
18 } else {
19
20 x += 10;
21 printf("E ");
22 }
23 printf("F ");
24
25 }

a) (2 pts) What is the total number of processes created by this function (include the original
process that called sunny)?

 3

6

Q3 (continued)

b) (2 pts) Which of the following outputs are possible. (Select ANY/ALL that are possible)

A E F B D F C F (“D” cannot print before “C F” due to wait())

A E F B C F D F

A B E C F F D F

A B C F F D E F (Need a "C", "D", or "E" coming sometime before each "F")

A B C F D F E F

c) (2 pts) Is it possible to insert a single additional call to wait() in the function sunny to
guarantee that “E F” is printed last in the output? If so, where? (Select ONE option)

Line 4

Line 7

Line 17

Line 19

Line 24

Not possible

d) (2 pt) Select all possible values of x that could be printed out if we changed the print statement on
line 23 to also print x (e.g printf("F%d ", x);). (Select ANY/ALL that are possible)

12

0

10

3

13

7

Q4: Virtual Memory (11 pts)
Assume we have a virtual memory system as follows:

●​ 8-bit virtual addresses, 6-bit physical addresses
●​ Page size = 16 bytes
●​ TLB: 2-way set associative, 4 entries total

a) (3 pts) How many bits will be used for:

Virtual page number (VPN)? ___4___ Physical Page number (PPN) __2___

TLB Tag? _____3_____

b) (2 pt) How many total entries are in this page table? (It is fine to leave your
answer in powers of 2)

​ ​ ​ _______2^4 or 16_______

The current contents of the TLB and Page Table (partial) are shown below:

TLB (2-way set associative)
Set Tag PPN Valid Tag PPN Valid

0 0x5 0x3 1 0x0 – 0

1 0x7 0x2 1 0x2 0x1 0

Page Table (partial)

VPN PPN Valid

0x0 0x3 1

0x1 0x0 1

0x2 0x0 0

0x3 0x2 1

0x4 – 0

0x5 0x1 1

0x6 – 0

0x7 – 0

8

Q4 (continued)

c) (6 pts) Fill in the following information for the two virtual addresses provided. If you cannot
determine the answer for a particular item write "ND" for non-determinable). Be sure to give your
answer using the correct number of bits.

Virtual
Address

VPN​
(give bits)

TLB tag ​
(give bits)

TLB index
(give bits)

PPN ​
(give bits)

Physical Address ​
(give bits)

TLB
Miss?
(Y/N)

Page
Fault?
(Y/N)

0x13
0001 000 1 00 00 0011 Y N

0x24
0010 001 0 ND ND Y Y

9

Q5: Memory Puzzles (11 pts)

 1 #include <stdlib.h>
 2 int zero = 0;
 3 int* party() {

 4 int cake; (local variable declared)
 5 return &cake; (address to local variable returned out of the function)
 6 }
 7 int main(int argc, char *argv[]) {
 8 char *str = "cse351";
 9 int *foo = malloc(8);
10 int bar = 16;

11 int* dessert = party(); (attempt to reference non-existent variable)
12 free(foo);
13 return 0;
14 }

a) (8 pts) Consider the C code shown above. Assume that the malloc call succeeds and that
all variables are stored in memory (not registers). Fill in the following blanks with "<" or ">" or
"UNKNOWN" to compare the values returned by the following expressions just before return
0 on line 13 executes.

&party _____<_____ foo (&party in Code section, foo in heap)

foo _____<_____ &foo (foo in heap, &foo on stack)

str _____<_____ &dessert (str in literals, &dessert on stack)

&bar _____>_____ &zero (&bar on the stack, &zero in Static Data)

b) (3 pts) The code above has an error that can best be described as: (Select ONE option)

 A. Dereferencing a non-pointer

 B. Memory leak

 C. Reading uninitialized memory

 D. Referencing a nonexistent variable (On line 5, we should not return the address of a
variable allocated on the stack. The stack frame for party() is deallocated when party()
returns.)

 E. Type mismatch

 F. Passing a bad pointer to free()

Please list the line number(s) that are relevant to this error:

10

Q6: Memory Allocation (3 pts)
Consider the diagram of a heap implemented using an implicit free list, where each square
represents 8 bytes of memory. Allocated squares are shaded and contain a letter, while free
squares are unshaded.

Assume an allocation request is made that results in a heap block with a total size of 24 bytes.
For each of the following allocation strategies, fill the appropriate squares with the letter “D”
to indicate the ones that would be allocated to fulfill this request. If it is not possible to fulfill
the request, you may note “not possible” beneath the corresponding diagram. You may assume:

●​ Each part of the question is independent. The heap returns to its original state before
each new allocation strategy is applied.

●​ The heap block (2 squares) labeled C was the block most recently allocated prior to this
request.

a) First Fit:

The first-fit algorithm scans the heap from the beginning and selects the first free block large
enough to satisfy the allocation request. In this case, it would allocate the first 24 bytes of the
free block immediately following allocation A.

b) Next Fit:

The next-fit algorithm starts scanning from where the last allocation ended, continuing to the
end of the heap and wrapping around to the beginning if needed. Since there isn’t a large
enough free block after C through the end of the heap, the search wraps around to the start of
the heap. It then finds the first free block large enough for the 24-byte request and allocates the
first 24 bytes of that block.

c) Best Fit:

The best-fit algorithm scans the entire heap to find the smallest free block that fits the request,
aiming to minimize fragmentation. In this case, the 24-byte free block between B and C is an
exact fit, making it the optimal choice.

11

Q7: C and Java (6 pts)
a) (6 pts) Use the following terms to fill in each empty cell in the table below with the most
similar concept.

Terms (you cannot use a term more than once):

vtable ​​ ​ pointer ​ ​ interpreter ​ ​ garbage collection
calling convention ​ virtual machine ​ null terminator ​ struct
ArrayList resizing ​ object file ​ ​ malloc​ ​ ​ buffer overflow
executable ​ ​ operand stack ​ java bytecode​​ explicit free list

C Concept Java Concept

malloc Object creation via new

x86 assembly instructions Java bytecode

pointer reference

free garbage collection

null terminator string length stored in header

realloc ArrayList resizing

12

Q8: Assembly Fun (6 pts)
Fill in the remainder of the C code that corresponds to the x86-64 assembly code given below:

mystery:

 movl (%rsi), %eax

 cmpl %eax, (%rdi)

 jle .L2

 movl %edx, (%rdi)

 ret

.L2:

 movl %edx, (%rsi)

 ret

void mystery(int * a, int * b, int c){

 if (*a > *b){

 *a = c;

 } else {

 *b = c;

 }

13

Q9: Pointers & Memory (9 pts)
We are using a 64-bit x86-64 machine (little endian). Refer to the disassembly below showing
where the function fireworks is in memory. Read the questions before reading the assembly!

0000000000401106 <fireworks>:
 401106: ​ 48 83 ec 18 ​ sub​ $0x18,%rsp
 40110a: ​ 89 7c 24 0c ​ mov​ %edi,0xc(%rsp)
 40110e: ​ 83 7c 24 0c 00 ​ cmpl $0x0,0xc(%rsp)
 401113: ​ 7e 14 ​ jle​ 401129 <fireworks+0x23>
 401115: ​ 8b 44 24 0c ​ mov​ 0xc(%rsp),%eax
 401119: ​ 83 e8 01 ​ sub​ $0x1,%eax
 40111c: ​ 89 c7 ​ mov​ %eax,%edi
 40111e: ​ e8 e3 ff ff ff ​ callq 401106 <fireworks>
 401123: ​ 48 c1 e0 02 ​ shl​ $0x2,%rax
 401127: ​ eb 05 ​ jmp​ 40112e <fireworks+0x28>
 401129: ​ b8 11 00 00 00 ​ mov​ $0x11,%eax
 40112e: ​ 48 83 c4 18 ​ add​ $0x18,%rsp
 401132: ​ c3​ ​ ​ ​ ret

a) (4 pts) What are the values (in hex) stored in each register shown after the following x86
instructions are executed? Use the appropriate bit widths. If a register's value cannot be
determined, write N/A. Assume registers are initialized as shown in the table below.

movslq 0x3(%rax), %rcx

leaw 0x1(%rsi,%rsi,2), %di

Register Value (in hex):

%rax 0x0000 0000 0040 111e

%rsi 0x0000 0000 0000 000A

%rcx 0xffff ffff c148 ffff

%di 0x001f

14

Q9 (continued)

b) (4 pts) Complete the C code below to fulfill the behaviors described in the inline comments
using pointer arithmetic. Let int* intP = 0x401120.

short* v1 = (short*)((long* or double*)intP + 2)​// set v1 = 0x401130

// Assuming that the statement above succeeded:

((___char*___)v1)[___-6___] = 5;// set the byte at 0x40112a to 0x05

c) (1 pt) What would happen if you ran the C code from part b)? (Assume that the fireworks
function is in memory as shown in the disassembly above, and that the code in b) has been filled in
with correct values.) Give your answer in terms of how the C code would affect the execution of a
program that later calls the fireworks function, and explain your answer in 2-3 sentences.

Running the C code from part b) would cause a segfault. The second line tries to modify
an address in the instructions segment of memory, which is non-writable due to
permissions, and so will cause the program to crash.

15

This is a Blank Page - enjoy!!!

16

	CSE 351 Spring 2025 Final Exam
	Q1: Caching and Code (6 pts)
	Q2: Caching and Bits (8 pts)
	Q3: Processes (8 pts)
	Q4: Virtual Memory (11 pts)
	Q5: Memory Puzzles (11 pts)
	Q6: Memory Allocation (3 pts)
	Q7: C and Java (6 pts)
	Q8: Assembly Fun (6 pts)
	Q9: Pointers & Memory (9 pts)

