
University of Washington — Computer Science & Engineering

CSE 351, Winter 2022 — Midterm Exam
Wednesday, February 9, 2022 — Friday, February 11, 2022

Name:

UW NetID: @uw.edu

Instructions

• You have 72 hours to complete the exam, though we expect that it will take you 1–4 hours.
Submit your work on Gradescope by Friday, February 11 at 11:59pm. Late submissions will
not be accepted.

• You may print this out and (legibly, please!) hand-write your answers, use e-ink on a tablet,
or use software such as Adobe Reader to type your answers. Regardless, please use the space
provided to help us with grading (except for the last question). Printed exams can be scanned
into a PDF using your phone; many such apps are available. Please ensure that the scans are
clear and the pages are straight.

• This exam is open note, open book, open Internet. Some questions will require the use of the
CSE Linux environment (either attu or the VM).

• Collaboration is permitted, subject to the “Gilligan’s Island Rule.” You may discuss prob-
lems with your classmates, and write things down on shared paper or whiteboards, but you
may not take any written artifacts from your discussions. You should engage in some kind
of unrelated activity for 30 minutes (like watching an episode of Gilligan’s Island) between
discussing exam problems and working on the exam, to ensure that you can fully understand
and reproduce the solutions yourself.

Question Points

Bits, Bytes, and Nybbles 5

Stuffed Animal Organization 9

Pointers and Characters and Numbers, Oh My! 18

The Careful Design of Pointy Things 8

Do The Register Shuffle 11

Stacks Considered hARMful 4

Don’t Overflow This Stack! 15

Taking a Step Back 10

Total: 80

1. (5 points) Bits, Bytes, and Nybbles

Given the 32-bit numeral 0x45480000, interpret it as a...

(a) (1 point) signed int:

(a) 1162346496

(b) (2 points) float:

(b) 3200

(c) (2 points) string literal, read from left-to-right (you may use an ASCII table for reference):

(c) EH

2. (9 points) Stuffed Animal Organization

Sam has decided to start collecting Beanie Babies! He needs to figure out a scheme for orga-
nizing them, and wants your help. There are two characteristics that he cares about: eye color
and number of legs.

Sam has multiple shelves on which he stores his Beanie Babies. Currently, each shelf can hold
up to 12 (but may hold fewer). His goal is to have a list of all his Beanie Babies and their
locations (which shelf, and where on the shelf), so that he can easily locate them. He’s come
up with two organizational schemes, both of which take up 16 bits of space.

Proposed Organizational Schemes

1. Store each field (shelf number, position on shelf, eye color, number of legs) separately,
with each field taking up 4 bits. Find a Beanie Baby by starting at the topmost
shelf and counting shelves from top-to-bottom until he reaches the correct shelf, then
counting Beanie Babies from left-to-right.

2. Combine the shelf number and shelf position fields into a new 8-bit field. Find a
Beanie Baby by starting from the leftmost Beanie Baby on the topmost shelf, then
counting Beanie Babies from left-to-right and from top-to-bottom. (The representa-
tion of eye color and number of legs remains the same.)

(a) (3 points) Which scheme can represent more valid positions of Beanie Babies? Justify
your answer in 1-2 sentences.

Solution: Scheme 2, since scheme 1 uses 4 bits (16 possible indices) for a Beanie
Baby’s position on a shelf, but each shelf only has 12 positions.

Heads up! There’s more to this question on the next page

Page 2

https://www.asciitable.com/
https://en.wikipedia.org/wiki/Beanie_Babies

(b) (3 points) Provide one advantage of using scheme 1 instead of scheme 2, given the way
that Sam will use this scheme in the real world. Justify your answer in 1-2 sentences.

Solution: Many possible answers. Examples: 1) less overall counting (can count ver-
tically to the proper shelf, then horizontally to the position); 2) if he adds or removes
a Beanie Baby, then he doesn’t need to changes the indices of all the others (just the
ones on that shelf).

(c) (3 points) Sam wants to compare Beanie Babies by number of legs. He writes a function
compareLegs, which takes two arguments, beanie1 and beanie2. It returns 1 if beanie1
has fewer legs than beanie2, and 0 otherwise. But he can’t remember how to complete
it. Write out the appropriate bit mask to make the function work properly. Assume that
the 4 bits storing number of legs are the least significant 4 bits of the data type.

int compareLegs(

unsigned short beanie1 ,

unsigned short beanie2

) {

return beanie1 & 0xF < beanie2 & 0xF ;

}

Page 3

3. (18 points) Pointers and Characters and Numbers, Oh My!

For this question, refer to the C assignments and memory diagram below, with addresses in-
creasing left-to-right and top-to-bottom. Remember that x86-64 machines are little endian.

char *c = 0x19;

short *s = 0xc;

float *f = 0x28;

Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 1e 00 00 00 00 00 00 00

0x08 aa bb cc dd ee ff 00 11

0x10 8a 7c 6f 22 9a 66 44 17

0x18 33 77 6f 6c 66 62 79 74

0x20 65 73 00 44 00 00 88 c0

0x28 de ad be ef ca fe f0 0d

(a) (15 points) Fill in the C type, hex value, and interpreted value for each of the following
C expressions. You should interpret integers in two’s complement, characters as ASCII,
and floating-point numbers using the IEEE-754 standard. You may find the floating-point
homework useful. For pointers, you can write “pointer” as the interpretation.

C Expression C Type Hex Value Interpretation

*s short 0xffee −18

f+2 float * 0x2c pointer

*(c+2) char 0x6c 'l'

f[-1] char 0xc0880000 −4.25

* ((short *) (c-1)) short 0x7733 30515

(b) If we treat c as a string literal (i.e., an array of ASCII characters)...
i. (1 point) What is its string value?

Solution: 'wolfbytes'

ii. (2 points) How many bytes are taken up by c and the data it points at?

Solution: 18 (8 for the pointer, 10 for the string itself, including the null termi-
nator)

Page 4

https://www.asciitable.com/
https://edstem.org/us/courses/16207/lessons/26004/slides/151686
https://edstem.org/us/courses/16207/lessons/26004/slides/151686

4. (8 points) The Careful Design of Pointy Things

Your intrepid instructor has decided to invent a new programming language, WolfLang, that
promises to fix all the issues from the languages that preceded it. He decides to include a
pointer datatype like C does, but with a few changes in an effort to make it safer.

Proposed Changes in WolfLang

1. Pointers can only be assigned to the address of a variable that matches their type;
they cannot be cast. For example, the following:

int x = 3;

float *y = (float *) &x; // invalid!

would not be valid in WolfLang because it attempts to cast an int * to a float *.

2. Pointers cannot be manipulated via arithmetic. For example, the following:

int x = 3;

int *xp = &x;

xp = xp + 1; // invalid!

would not be valid because it performs pointer arithmetic on xp.

What advantages and disadvantages do the restrictions in WolfLang’s pointers create compared
to C pointers? Give one of each, and discuss what they will mean for programmers using the
language.

Solution: Many possible answers. Examples of advantages: 1) cannot cast pointers in such
a way that they reference mystery data (e.g., int to long), 2) cannot change addresses to
mystery data. Disadvantages: 1) more difficult to do certain bit twiddling operations (e.g.,
treat int like a float), 2) pointer arithmetic can sometimes lead to cleaner code.

Page 5

5. (11 points) Do The Register Shuffle

You come across the following mysterious-looking assembly function. This function takes two
arguments. Assume that the C variables for each argument are the same as their register
names, i.e., rdi and rsi.

mystery:

jmp .L2

.L3:

movb %al , (%rsi)

addq $1 , %rdi

addq $1 , %rsi

.L2:

movzbl (%rdi), %eax

testb %al , %al

jne .L3

movb $0 , (%rsi)

ret

(a) (1 point) In the above function, what C variable type is %rdi?

(a) char *

(b) (1 point) What C variable type is %rsi?

(b) char *

(c) (2 points) This function contains a while loop. What is the loop condition?

while (* rdi != '\0' or 0) {

(d) (5 points) Fill in the missing parts of the C code that is equivalent to the assembly above:

void mystery((answer to a) rdi , (answer to b) rsi) {

while ((answer to c)) {

*rsi = *rdi ;

rdi++ ;

rsi++ ;

}

*rsi = '\0' or 0 ;

}

Hey, there’s more to this question! Don’t forget to turn the page!

Page 6

(e) (2 points) On a high level, what does this function accomplish? Explain in 1-2 sentences.

Solution: It copies the null-terminated string from arg1 to arg2 (strcopy).

(f) (2 points extra credit) This function is vulnerable to buffer overflow attacks! Briefly
explain how.

Solution: There is no way to specify the length of arg2, so it will blindly copy arg1

to arg2 until it reaches a null terminator, even if there’s not enough space allocated.

6. (4 points) Stacks Considered hARMful

Some instruction set architectures, like ARM, provide a register in which a procedure stores its
return address before making a call. The return address is only pushed onto the stack when the
callee needs to make another call, because the register will be overwritten by the new return
address. When this happens, you can think of the return address register like a special-purpose
caller-saved register.

Provide one advantage of including this register. Briefly justify your answer.

Solution: Many possible answers. Examples: reduced memory footprint for leaf function;
don’t need to access (slow) memory as much; simpler assembly code for procedures that
don’t call other procedures; more difficult to perform buffer overflow attacks because the
return address is further up the stack.

Page 7

7. (15 points) Don’t Overflow This Stack!

For this problem, we’ll examine a strange recursive C function (and corresponding assembly).
One of the main goals here is to give you additional experience with using gdb.

In a CSE Linux environment (attu or the CSE VM), execute the following three commands to
download the necessary files, and set the correct permissions:

wget https://courses.cs.washington.edu/courses/cse351/22wi/files/strange.c

wget https://courses.cs.washington.edu/courses/cse351/22wi/files/strange

chmod +x strange

To ensure consistency, please do not recompile strange.

Addresses & Memory Layout

(a) (1 point) Using the print command in gdb, what is the address of the function strange?

(a) 0x401146

(b) (1 point) When the compiler created an object file for this code, which table(s) stored the
function strange’s name?
⃝ Symbol table ⃝ Relocation table

√
Symbol and relocation table

(c) (2 points) By looking at the disassembly, what is the highest return address that will be
pushed onto the stack by the function strange?

(c) 0x401172

(d) (2 points) How many bytes does the code for the function strange take up in memory?

(d) 48

Stack Frame Layout

(e) (1 point) How large is the stack frame of strange? Recall that the return address is
considered part of the callee’s stack frame.

(e) 16B

(f) (2 points) Which register(s) are pushed onto the stack by strange? Which C variable(s)
are stored in these registers after pushing the previous value(s)?

Solution: Just %rbx, which is used to store n.

Oh my, this question continues on the next page!

Page 8

Stack Frame Counts

You can run strange in the terminal with a single command-line argument, which is the argu-
ment n to the strange function. For example, ./strange 3 will run the function with n = 3.
The program will print out the sum of all numbers it computed in recursive calls.

(g) (2 points) Which command-line argument creates the highest number of user-defined
stack frames? Start counting from the first call to strange (i.e., don’t count main or
printf).
⃝ 2

√
3 ⃝ 4 ⃝ 5

(h) (2 points) How many user-defined stack frames are created when executing strange with
the command-line argument above? Again, start counting from the first call to strange.

(h) 8

(i) (2 points) What is the maximum stack frame depth when executing strange with the
command-line argument above? Start counting from the first call to strange.
Note that you can verify this by stopping at the maximum depth, executing the command
backtrace, and counting the output lines.

(i) 8

Page 9

8. (10 points) Taking a Step Back

Write 2–4 paragraphs reflecting on the experience of learning the material in this half of the
course. This is open-ended; we’re looking for evidence that you took some time to think
through how this material (course material, lectures, and labs) personally affected you.

This could be exclusively technical or exclusively socio-technical, but we’d prefer you include
elements of both. There isn’t a single correct answer here — we just want you to have some
space to reflect on what you’ve accomplished, what felt valuable to you, and what you’d rather
do without.

If you’re not sure where to start, we’d recommend following the format below. You aren’t
required to use this, but it may be helpful for getting started with the creative process.

We’ve provided space on the next pages for you to hand-write your reflection, if you prefer
(legibly, please!). You are not required to fill out all two pages; we’ve intentionally left ex-
tra room to accommodate various writing styles. You can also attach typed page(s) to your
submission.

We’re expecting this should take you around 30 minute to complete.

Optional Example Format

For each statement, note the degree to which you agree with it; one of Strongly Disagree,
Disagree, Somewhat Disagree, Neutral, Somewhat Agree, Agree, Strongly Agree. Then, write
a few paragraphs that explain your choice, noting both what might have changed and how
you’ve experienced that change.

• From my experiences in this course, my view of low-level programming has changed.

• From my experiences in this course, my understanding of how computation is performed
has changed.

• From my experiences in this course, my idea of what it means to be a computer scientist
has changed.

• From my experiences in this course, the way that I see myself in computing spaces has
changed.

• From my experiences in this course, the way I see myself broadly has changed.

• From my experiences in this course, my career goals, either from my first job or from my
career as a whole have changed.

Solution: Full credit for any reasonable, well-thought out discussion.

Page 10

CSE 351 Reference Sheet (Midterm)
Binary Decimal Hex

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Assembly Instructions
mov a, b Copy from a to b.

movs a, b Copy from a to b with sign extension. Needs two width specifiers.

movz a, b Copy from a to b with zero extension. Needs two width specifiers.

lea a, b Compute address and store in b.
Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.

push src Push src onto the stack and decrement stack pointer.

pop dst Pop from the stack into dst and increment stack pointer.

call <func> Push return address onto stack and jump to a procedure.

ret Pop return address and jump there.

add a, b Add from a to b and store in b (and sets flags).

sub a, b Subtract a from b (compute b-a) and store in b (and sets flags).

imul a, b Multiply a and b and store in b (and sets flags).

and a, b Bitwise AND of a and b, store in b (and sets flags).

sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).

shl a, b Shift value of b left by a bits, store in b (and sets flags).

cmp a, b Compare b with a (compute b-a and set condition codes based on result).

test a, b Bitwise AND of a and b and set condition codes based on result.

jmp <label> Unconditional jump to address.

j* <label> Conditional jump based on condition codes (more on next page).

set* a Set byte a to 0 or 1 based on condition codes.

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

Conditionals

Instruction (op) s, d test a, b cmp a, b

je sete “Equal” d (op) s == 0 b & a == 0 b == a

jne setne “Not equal” d (op) s != 0 b & a != 0 b != a

js sets “Sign” (negative) d (op) s < 0 b & a < 0 b-a < 0

jns setns (non‐negative) d (op) s >= 0 b & a >= 0 b-a >= 0

jg setg “Greater” d (op) s > 0 b & a > 0 b > a

jge setge “Greater or equal” d (op) s >= 0 b & a >= 0 b >= a

jl setl “Less” d (op) s < 0 b & a < 0 b < a

jle setle “Less or equal” d (op) s <= 0 b & a <= 0 b <= a

ja seta “Above” (unsigned >) d (op) s > 0U b & a > 0U b >U a

jb setb “Below” (unsigned <) d (op) s < 0U b & a < 0U b <U a

Registers
 Name of “virtual” register

Name Convention
Lowest
4 bytes

Lowest
2 bytes

Lowest
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack Pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Sizes

C type
x86‐64
suffix

Size
(bytes)

char b 1

short w 2

int l 4

long q 8

