
 1 of 8

CSE 351 Winter 2020 – Midterm Exam (Feb 10, 2020)

Please read through the entire examination first!

 You have 50 minutes for this exam. Don’t spend too much time on any one problem!

 The last page is a reference sheet. Feel free to detach it from the rest of the exam.

You do NOT need to submit the reference sheet with your exam.

 The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no

mobile phones).

There are 5 problems for a total of 50 points. The point value of each problem is indicated in the

table below. Write your answer neatly in the spaces provided.

- You may leave once you are done with the exam, however during the last 5 minutes of the

exam we will ask that everyone remain in the room until the bell rings.

- You MUST stop writing once the bell rings. Points will be deducted if you are writing beyond

the bell.

Good Luck!

Your Name:__________________________

UWNet ID (email):__________________________

Problem Topic Max Score

1 Integers & Floats 12

2 Pointers & Memory 8

3 Hardware to Software 6

4 C & Assembly 12

5 Stack Discipline 12

TOTAL 50

 2 of 8

1. Integers and Floats (12 points total)

a) (1 pt) If we have only 9 bits and are using two’s complement representation, how many

positive, non-zero numbers can we represent?

b) (1 pt) If we have only 9 bits and are using sign-magnitude representation, how many positive,

non-zero numbers can we represent?

c) (6 pt) Given the following in C: signed char x = 0b 0101 0001

i. (2 pts) What is the value of x in decimal? You may represent your answer as the sum of

powers of 2.

ii. (4 pts) For each of the following expressions, indicate whether it will result in a positive,

negative or a zero result. (Circle one)

 x >> 3 Positive Negative Zero

 x + 0x62 Positive Negative Zero

 x << 1 Positive Negative Zero

 !(x & 0x1) Positive Negative Zero

d) (4 pts) Assume we have a floating point representation that follows the same conventions as

IEEE 754, except that is uses 9 bits. 1 bit is for the sign, 4 bits are used for the exponent and 4

bits are used for the mantissa.

i. What is the bias for this representation

ii. What is the decimal value encoded by the bit pattern: 1 1001 1110

For any credit, show your work.

Is this number

(circle one):

positive or

negative

 3 of 8

2. Pointers, Memory & Registers (8 points total)

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and

initial state of memory (values in hex) shown below:

Address +0 +1 +2 +3 +4 +5 +6 +7

0x30 51 32 43 7A 3B FA E4 76

0x38 48 22 00 88 9A B2 CD 27

0x40 4F 17 B3 2B A0 A7 BC F9

0x48 40 03 08 15 A9 8B F2 3F

0x50 AA BB CC DD EE FB 01 02

char* cp = 0x30;

long* qp = 0x48;

int* ip = 0x3C;

a) (5 pts) Fill in the type and value for each of the following C expressions. If a value cannot be

determined from the given information answer UNKNOWN.

Expression (in C) Type Value (in hex)

*ip

cp + 13

qp[-2] + 1

((char) qp)

(((short) ip) - 3)

b) (3 pts) What are the values (in hex) stored in each register shown after the following x86

instructions are executed? Refer to the state of memory shown above. If a value cannot be

determined from the given information answer UNKNOWN. Remember to use the appropriate

bit widths.

 Register Value (in hex)

%rax 0x0000 0000 0000 0040

%rsi 0x0000 0000 0000 0002

leaq (%rsi,%rsi,4), %rbx %rbx

movw 10(%rax), %cx %cx

movsbl -2(%rax,%rsi,2), %edi %edi

 4 of 8

3. Hardware to Software (6 points total)

Ruth placed a bet with your TAs that they couldn’t make and sell CPUs that implement the x86-64

instruction set better than Intel does. Your TAs came up with the following list of suggested changes.

For each modification, circle TRUE if the new architecture still implements the x86-64 instruction

set architecture, or FALSE if not. Also very briefly explain your answer in the space provided.

a) Make %r10 and %r11 additional return value registers instead of their original function.

This change would still implement the x86-64 instruction set:

TRUE FALSE Why?__

b) Reorganize all of the registers on the physical chip.

This change still implements the x86-64 instruction set:

TRUE FALSE Why?__

c) Re-implement the add instruction to be 200% faster.

This change still implements the x86-64 instruction set:

TRUE FALSE Why?__

 5 of 8

4. C and Assembly (12 points total)

Consider the following function given in x86-64 assembly:

fun:

 movl $0, %eax # Line 1

 jmp .L2 # Line 2

.L3:

 addq $1, %rsi # Line 3

.L2:

 cmpq %rdx, %rsi # Line 4

 jge .L5 # Line 5

 movl (%rdi,%rsi,4), %ecx # Line 6

 testl %ecx, %ecx # Line 7

 jns .L3 # Line 8

 addl %ecx, %eax # Line 9

 jmp .L3 # Line 10

.L5:

 rep ret # Line 11

a) (4 pts) Fill in the function’s C signature with the correct C types:

_________ fun(_________ arg1, _________ arg2, _________ arg3)

b) (2 pts) This function contains a while loop. What is the loop condition? Feel free to use register

names as variables.

while (____________________________________)

c) (2 pts) Rewrite the conditional jump on lines 7 and 8 using cmpl instead of testl. Write

correct assembly code that could be substituted for line 7 & line 8.

 cmpl ______________, ______________ # Line 7

 ______________ ______________________________ # Line 8

d) (4 pts) Briefly describe what you think this function accomplishes. What is the value returned

by this function and how it is computed? (at a high level, not line-by-line)

 6 of 8

5. Stack Discipline (12 points total)

Examine the following recursive function:

long dubs(long x, int* y) {

 if (x > 2) {

 return x + *y + dubs(x - 2, y);

 } else {

 return 3 * x + *y;

 }

}

Here is the x86_64 assembly for the same function:

0000000000400507 <dubs>:

 400507: cmp $0x2,%rdi

 40050b: jg 400518 <dubs+0x11>

 40050d: lea (%rdi,%rdi,2),%rax

 400511: movslq (%rsi),%rdx

 400514: add %rdx,%rax

 400517: retq

 400518: push %rbx

 400519: movslq (%rsi),%rax

 40051c: lea (%rax,%rdi,1),%rbx

 400520: sub $0x2,%rdi

 400524: callq 400507 <dubs>

 400529: add %rbx,%rax

 40052c: pop %rbx

 40052d: retq

We call dubs from main(), with registers %rsi = 0x7ff…ffbd8 and %rdi = 5. The value

stored at address 0x7ff…ffbd8 is the int value 4 (0x4). We set a breakpoint at

“return 3 * x + *y” (i.e. we are just about to return from dubs() without making another

recursive call). We have executed the add instruction at 400514 but have not yet executed the

retq.

Fill in the register values on the next page and draw what the stack will look like when the

program hits that breakpoint. Give both a description of the item stored at that location and the

value stored at that location. If a location on the stack is not used, write “unused” in the Description

for that address and put “-----” for its Value. You may list the Values in hex or decimal. Unless

preceded by 0x we will assume decimal. It is fine to use f…f for sequences of f’s as shown for

%rdi. Add more rows to the table as needed.

** *** ** *** ** DON’T FORGET! Also, fill in the box on the next page to include the value this call

to dubs will finally return to main. ** *** ** *** **

Breakpoint

 7 of 8

Register Original Value Value at Breakpoint

rdx 8

rsp 0x7ff…ffbd0

rdi 5

rsi 0x7ff…ffbd8

rbx 678

rax 33

Memory address on stack Name/description of item Value

0x7ffffffffffffbd8 Local var in main 0x4

0x7ffffffffffffbd0 Return address back to main 0x400986

0x7ffffffffffffbc8

0x7ffffffffffffbc0

0x7ffffffffffffbb8

0x7ffffffffffffbb0

0x7ffffffffffffba8

0x7ffffffffffffba0

0x7ffffffffffffb98

0x7ffffffffffffb90

0x7ffffffffffffb88

0x7ffffffffffffb80

0x7ffffffffffffb78

0x7ffffffffffffb70

0x7ffffffffffffb68

What value is finally returned to main by this call?
DON’T

FORGET

 8 of 8

****************** SCRATCH PAPER ******************

