
CSE 351 Midterm Exam

Winter 2019

Thursday, February 14, 2019

Name:

UW NetID:

First, a quick note. This is a take-home exam. We are giving you certain liberties and restrictions on
how you complete it (see below). Above all, we are trusting you to comply with the stated rules and to
complete the exam honestly. Failure to do so will result in a failing grade and disciplinary action.

Good luck! And remember, if you’re stupid enough to cheat, I’m stupid enough to catch you.

- Max

Instructions

• You may not collaborate. You must complete the exam alone.

• You may ask clarifying questions on Piazza. Use the midterm tag and make the question only visible
to instructors.

• Show scratch work for partial credit, but put your final answers in the blanks provided.

• Write your UW NetID on the top right corner of every page.

• The last page is a reference sheet. Please detach it from the rest of the exam. Do not scan the
reference sheet.

• The exam is open course material. You may use content from the course website and the book,
including slides, lectures, and section material.

• The exam should take just under 1 hour.

• If you can’t get something, relax. Show what you know and you’ll get partial credit.

• The exam totals 100 regular points and 10 extra credit points.

• The exam is due Thursday, February 14 at 11:59pm. You must scan and submit it to
Gradescope according to the instructions on Piazza.

Question: Number representation Pointers x86-64 Procedures Extra Credit Total

Points: 20 30 25 25 10 110

Score:

1

UW NetID:

Question 1: Number representation (20 total points)

(a) (6 points) If we have seven (7) bits to represent integers, what is largest unsigned number and what
is largest 2s complement signed number we can represent (in decimal and binary)?

Largest unsigned:

Most positive signed:

Most negative signed:

(b) (3 points) Complete the code below using only the space underlined (no extra lines of C). The
function is negative should return 1 if x is negative, and 0 otherwise. You may not use the
comparison operators < and >.

int is_negative(int x)
{

return ;
}

(c) (2 points) Is floating point addition associative? (Does a + (b + c) = (a + b) + c?)
Explain in 1 sentence.

(d) (2 points) Is floating point addition commutative? (Does a + b = b + a?)
Explain in 1 sentence.

(e) (2 points) Explain in 1-2 sentences why testing for float equality (ex: f1 - 1.0 == f2) is rarely
useful and should be done with caution.

2

UW NetID:

(f) (5 points) Does the following function always return? If so, explain what it returns. If not, explain
why.

float add_loop() {
float f1 = 1E30; // this is 1 * 10ˆ30 in decimal
float f2 = 1E-30;
while (f1 > 1E29) {

f1 -= f2;
}
return f1;

}

3

UW NetID:

Question 2: Pointers (30 total points)

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of memory
(values in hex) is shown below:

Word
Addr

+0 +1 +2 +3 +4 +5 +6 +7

0x00 BD 28 ED 02 35 72 3A AF
0x08 66 6F B1 E9 00 FF 5D 4D
0x10 86 06 04 30 64 31 8C B3
0x18 63 78 1E 1C 25 34 EE 93
0x20 42 6C 65 67 DE AD BE EF
0x28 CA FE D0 0D 1E 93 FA CE

(a) (16 points) Write the value in hexadecimal of each expression within the commented lines at
their respective state in the execution of the given program. Write UNKNOWN in the blank if the
value cannot be determined.

int main(int argc, char** argv) {
char *charP;
short *shortP;
int *intP = 0x00;
long *longP = 0x28;

// The value of intP is: 0x

// *intP 0x

// &intP 0x

// longP[-2] 0x

charP = 0x20;
shortP = (short *) intP;
intP++;
longP--;

// *shortP 0x

// *intP 0x

// *((int*) longP) 0x

// (short*) (((long*) charP) - 2) 0x
}

4

UW NetID:

(b) Classic arcade games such as PacMan displayed ranked player scores after a game over. Below we
define a struct (Score) to store the information.

struct Score {
char name[4];
int rank;
long score;

};

Answer the following questions using the current state of memory (from previous page):

i. (2 points) What is the size (in bytes) of our struct Score?

ii. (4 points) Given a struct Score *p;, write an expression equivalent to p->rank that uses
pointer arithmetic and casting instread of struct field access notation (dot and arrow).

Suppose we have some array of scores (defined below) that begins at address 0x00 in the table
on the previous page.

Score scores[3]; // Address of scores = 0x00

iii. (2 points) What is the value (in hex) of scores[1].score? 0x

iv. (2 points) Which value is greater? (Circle one)

scores[0].name[3] scores[2].name[1]

Suppose we were to switch the order in which the fields of Score are declared to the following:

struct Score {
char name[4];
long score;
int rank;

};

v. (2 points) What is the size (in bytes) of our new struct Score?

vi. (2 points) What is the size (in bytes) of our new array scores?

5

UW NetID:

Question 3: x86-64 (25 total points)

Suppose we have the following assembly code for a C function called mystery:

1 mystery:
2 movl $0, %eax
3 .L1:
4 movb (%rdi), %cl
5 cmpb %cl, (%rsi)
6 je .L2
7 jl .L3
8 addb $1, (%rdi)
9 jmp .L4

10 .L3:
11 addb $1, (%rsi)
12 .L4:
13 addb $1, %eax // this line is buggy
14 jmp .L1
15 .L2:
16 ret

(a) (3 points) The assembler would reject line 13 because of a problem. Describe the problem in 1
sentence and provide a fix.

(b) (4 points) How does the je on line 6 “know” whether to jump or not? What about the jl on line
7? Explain in at most 1 sentence each.

6

UW NetID:

(c) (18 points) Fill in the C skeleton below so that the C definition of mystery has the same behavior
as the (fixed) assembly version above.

int mystery(p1, p2) {

int x = ;

while() {

if() {

;

} else {

;
}

;
}
return x;

}

7

UW NetID:

Question 4: Procedures (25 total points)

Consider the following implementation of accumulate which recursively adds the first n numbers. The
C and assembly are shown below.

In the questions below, use the line numbers given to refer to parts of the assembly.

unsigned accumulate(unsigned n, unsigned total_so_far) {
if (n == 0)

return total_so_far;
return accumulate(n - 1, n + total_so_far);

}

1 accumulate:
2 subq $8, %rsp
3 movl %esi, %eax
4 testl %edi, %edi
5 je .L1
6 addl %edi, %esi
7 subl $1, %edi
8 call accumulate
9 .L1:

10 addq $8, %rsp
11 ret

8

UW NetID:

(a) (2 points) List the callee-saved registers (if any) used by accumulate.

(b) (4 points) The x86-64 ABI states (and the hardware itself prefers) that %rsp should be 16-byte
aligned right before a call instruction. Which instructions are responsible for ensuring this? In
a sentence or less, explain why these instructions are necessary to satisfy the 16-byte alignment of
calls.

(c) Consider the behavior of accumulate(6, 0)

i. (1 point) What does it return?

ii. (2 points) How many stack frames will it use in total?

iii. (2 points) What is the size of a single stack frame (in bytes)?

iv. (2 points) How much total stack space does this call use (in bytes)?

(d) (4 points) How much total stack space does accumulate(n, 0) use? Write your answer in terms
of n.

9

UW NetID:

You wisely observe that calling and returning immediately (lines 8-11 in the assembly) seems waste-
ful. So you decide to replace the call instruction on line 8 with jmp accumulate. You also
note that this new version returns the same answer. The remaining questions refer to this
modification.

(e) (4 points) The modified version now violates stack discipline. After calling the modified accumulate
procedure, a register will be different than before (and shouldn’t be). What is that register? Briefly
state how to fix this problem by adding, removing, or changing a small number of instructions, and
why you can do this to this modified version of the program but not the original.

(f) (4 points) After the fix in part (e), how much stack total space will a call to accumulate(n, 0)
procedure use? State your answer as a number of bytes in terms of n.

10

UW NetID:

Question 5: Extra Credit (10 total points)

unsigned foobar(unsigned x) {
x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1);
x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2);
x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4);
x = ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8);
x = ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16);
return x;

}

What does the above function foobar return when given the following inputs:

(a) (2 points) foobar(1) =

(b) (2 points) foobar(0xFFF00F00) =

(c) (6 points) Explain in 1-2 sentences what foobar does in general.

11

UW NetID:

This page intentionally left blank.

12

CSE 351 Reference Sheet (Midterm)
Binary Decimal Hex

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Assembly Instructions
mov a, b Copy from a to b.

movs a, b Copy from a to b with sign extension. Needs two width specifiers.

movz a, b Copy from a to b with zero extension. Needs two width specifiers.

leaq a, b Compute address and store in b.

Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.

push src Push src onto the stack and decrement stack pointer.

pop dst Pop from the stack into dst and increment stack pointer.

call <func> Push return address onto stack and jump to a procedure.

ret Pop return address and jump there.

add a, b Add a to b and store in b (and sets flags).

sub a, b Subtract a from b (compute b-a) and store in b (and sets flags).

imul a, b Multiply a and b and store in b (and sets flags).

and a, b Bitwise AND of a and b, store in b (and sets flags).

sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).

shl a, b Shift value of b left by a bits, store in b (and sets flags).

cmp a, b Compare b with a (compute b-a and set condition codes based on result).

test a, b Bitwise AND of a and b and set condition codes based on result.

jmp <label> Unconditional jump to address.

j* <label> Conditional jump based on condition codes (more on next page).

set* a Set byte based on condition codes.

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

Conditionals

Instruction Condition (op) s, d test a, b cmp a, b

je “Equal” ZF d (op) s == 0 b & a == 0 b == a

jne “Not equal” ~ZF d (op) s != 0 b & a != 0 b != a

js “Sign” (negative) SF d (op) s < 0 b & a < 0 b-a < 0

jns (non-negative) ~SF d (op) s >= 0 b & a >= 0 b-a >= 0

jg “Greater” ~(SF^OF) & ~ZF d (op) s > 0 b & a > 0 b > a

jge “Greater or equal” ~(SF^OF) d (op) s >= 0 b & a >= 0 b >= a

jl “Less” (SF^OF) d (op) s < 0 b & a < 0 b < a

jle “Less or equal” (SF^OF) | ZF d (op) s <= 0 b & a <= 0 b <= a

ja “Above” (unsigned >) ~CF & ~ZF d (op) s > 0U b & a < 0U b > a

jb “Below” (unsigned <) CF d (op) s < 0U b & a > 0U b < a

Registers
 Name of “virtual” register

Name Convention
Lowest
4 bytes

Lowest
2 bytes

Lowest
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack Pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Sizes

C type
x86-64
suffix

Size
(bytes)

char b 1

short w 2

int l 4

long q 8

