
CSE 351 Final Exam

Winter 2019

Tuesday, March 19, 2019

Name:

UW NetID:

Instructions

• Show scratch work for partial credit, but put your final answers in the blanks provided.

• Write your UW NetID on the top right corner of every page.

• The last sheet is a reference sheet. Please detach it from the rest of the exam.

• You have 1 hour and 50 minutes for the exam.

• There are 210 points, plus 10 extra credit points, for a total of 220 points.

• This is a long exam. We are giving you many opportunities to show what you know and earn points.
If you can’t get something, relax. Do not get stuck, move on to another problem.

Question Points Score

Arrays and Structs 30

x86-64 Assembly 16

Procedures 20

Buffer Overflow 22

Processes 20

Caches 32

Virtual Memory 30

Allocation 20

Memory Bugs 20

Extra Credit 10

Total: 220

1

UW NetID:

Question 1: Arrays and Structs (30 total points)

The following questions refer to this definition of cse_building.

typedef struct {
int num_donors; // number of contributors
char** donor_names; // pointer to strings representing donors
char has_soft_seats; // 1 if has soft furniture, 0 otherwise
char location_name[10]; // C string for building location
short height; // height, in feet

} cse_building;

(a) Give the following quantities as numbers of bytes in the blanks on the right.

i. (2 points) sizeof(cse_building)

ii. (2 points) Internal fragementation of cse_building

iii. (2 points) External fragementation of cse_building

(b) Given the following declaration:

cse_building building;

Rewrite the following expressions using only pointer arithmetic, &, *, and casting (so no dot or
arrow operators).

i. (2 points) building.num_donors

ii. (2 points) &building.donor_names

2

UW NetID:

(c) (8 points) Implement the following function by code below that would go in the designated loop
body.

You may assume that at cse_building always has non-negative num_donors.

// params:
// a -> pointer to the beginning of an array of cse_buildings
// len -> number of cse_buildings in the array (> 0)
// returns:
// a pointer to the cse_building with the most donors
// (if it’s a tie, return the first one in the array).
cse_building* has_most_donors(cse_building* a, int len) {

cse_building* max_donors;
int max_donor_num = 0;
for (int i = 0; i < len; i++) {

// ------------------------- //
// WRITE CODE THAT GOES HERE //
// ------------------------- //

}
return max_donors;

}

3

UW NetID:

(d) (4 points) Your friend (who also took CSE 351) claims to have a more space efficient way of storing
this information, showing you the following:

typedef struct {
char** donor_names; // pointer to strings representing donors
short height; // height, in feet
int num_donors; // number of contributors
char has_soft_seats; // 1 if has soft furniture, 0 otherwise
char location_name[10]; // C string for building location

} cse_building_better;

Are they right in saying it’s more space efficient? Why or why not?

(e) (8 points) Suppose that we knew that there can be at most 3 donors for any cse_building, and
that their names would be no longer than 13 characters (plus one null terminator). We can use this
information to fill in the following struct definition:

typedef struct {
char donor_names[3][14];
short height;
int num_donors;
char has_soft_seats;
char location_name[10];

} cse_building_v2;

Name 1 benefit of this alternate representation over the one shown in part (d). Name 1 drawback
as well.

4

UW NetID:

Question 2: x86-64 Assembly (16 total points)

(a) pushq and popq are important instructions for manipulating the stack. However, they can be
replaced by combinations of other instructions.

i. (4 points) Write a sequence of assembly instruction(s) without a pushq that has the same
behavior as pushq %rax.

ii. (4 points) Write a sequence of assembly instruction(s) without a popq that has the same
behavior as popq %rax.

(b) (4 points) What is the difference between movq $1, %rax and movq $1, (%rax)? (1 sentence)

(c) (4 points) Given the following (decimal) values of registers:
%rax = 20
%rbx = 5

What is the value of %rsi after the following instruction:
leaq 3(%rax, %rbx, 2), %rsi

5

UW NetID:

Question 3: Procedures (20 total points)

Consider the following C program fragment compiled without and with a common optimization called
inlining. The left side shows the unoptimized C and corresponding assembly. The right side shows the
assembly compiled with inlining, and above that is “manually” inlined C code.

To inline a function, the compiler essentially replaces calls to that function with the whole body of the
function. In the below optimized code on the right, times has been inlined into the body of cube.

// the initial C code
int times(int x, int y) {

return x * y;
}

int cube(int x) {
int x2 = times(x, x);
return times(x, x2);

}

// unoptimized assembly
times:

movl %edi, %eax
imull %esi, %eax
ret

cube:
pushq %rbx
movl %edi, %ebx
movl %edi, %esi
call times
movl %eax, %esi
movl %ebx, %edi
call times
popq %rbx
ret

// the manually optimized C
int times(int x, int y) {

return x * y;
}

int cube(int x) {
int x2 = x * x;
return x * x2;

}

// optimized assembly
times:

movl %edi, %eax
imull %esi, %eax
ret

cube:
movl %edi, %eax
imull %edi, %eax
imull %edi, %eax
ret

(a) i. (2 points) Which callee-saved registers (if any) does the unoptimized cube use?

ii. (2 points) Which callee-saved registers (if any) does the optimized cube use?

6

UW NetID:

The optimization makes the code run 4 times faster! You can see that the optimized cube has no
call instructions anymore, instead it has two imulls. But it also has far fewer total instructions.

(b) (6 points) Explain briefly why the compiler was able to remove the pushq and popq instructions
and many of the move instructions

While it’s one of the most important optimizations performed by compilers, inlining is not always
effective or even possible. Now we will consider some of the limitations of this technique.

(c) (5 points) Consider recursive functions. Can a recursive function be inlined into itself? If so, are
there limitations or drawbacks? If not, explain why. Your response should be 2-3 concise sentences.

(d) (5 points) Consider functions that are very large (in terms of number of instructions) or take a long
time to run (have long running loops). These functions can be inlined into other functions, but the
benefit is much smaller than we saw in the example on the previous page. In some cases, inlining
these can make your code slower!

Why is the benefit smaller? Your response should be 2-3 concise sentences.

7

UW NetID:

Question 4: Buffer Overflow (22 total points)

You’re Sokka — fighting the good fight against the invading Fire Nation army. To stop a legion of Fire
Nation ships, you’ve decided to hack into them and remotely disable them!

During your mission, you’ve learned that their control system runs on a system very similar to x86-64
Linux, but with two key differences:

• Addresses are 32-bits (and thus so are pointers)

• All arguments to functions are passed on the stack

You’ve also obtained an excerpt on their control system’s source code:

1 void set_all_ship_controls(char* mode);
2 void check_password(char* password);
3
4 // pass_input_to_function’s parameter is a function pointer,
5 // which is the address of a function
6 void pass_input_to_function(void (*f)(char*)) {
7 char input[16];
8 gets(input);
9 f(input); // Calls f based on the argument stored on the stack

10 }
11
12 void login() {
13 printf("Input your password:\n");
14 pass_input_to_function(&check_password);
15 printf("Done!\n");
16 }

Recall that gets() is a libc function that reads characters from standard input until the newline (’\n’)
character is encountered. The resulting characters (not including the newline) are stored in the buffer
that’s given to gets() as a parameter. If any characters are read, gets() appends a null-terminating
character (’\0’) to the end of the string.

The normal behavior of the above program is as follows. Once login is called, it will print “In-
put your password:”. Then it will call pass_input_to_function with a pointer to the function
check_password as the argument. pass_input_to_function calls gets to get input from stdin,
then it calls the given function (in this case, check_password) with the input recieved from gets as
the argument. Then it returns, and then login prints “Done!” and returns.

(a) (4 points) Explain why the use of the gets() function introduces a security vulnerability in the
program?

8

UW NetID:

The table below shows the stack right before line 9 (from the previous page) runs. The stack pointer
is 0x7fff8000.

Address Value
0x7fff800C &f
0x7fff8008 return address to line 15
0x7fff8004
0x7fff8000 start of buffer input

(b) (6 points) You’ve gained access to their control system, but you don’t know the password. Thank-
fully, you’ve learned that set_all_ship_controls is located at address 0x351, and that calling
set_all_ship_controls("off!") will cause all the ships to stop working!

Construct a sequence of bytes that can get sent to the program during a call to login() (read by
gets) and trigger the above vulnerability and cause all the ships to stop working. Set any other
overwritten stack values to 0; ignore any problems this may cause for now.

Give your answer as a sequence of bytes, each written in hex.
Put space between each byte (like this: “13 AE 00 00 4E 00 00 00 00”).

Hint. The ASCII values (in hex) of the characters in “off!” are: 6f 66 66 21

(c) (4 points) You notice that, after constructing the string above, there is one more issue: the program
will segfault at some point after calling set_all_ship_controls! What is the cause of this
crash, and how could we change our attack string to prevent it? Explain in 1-2 sentences.

9

UW NetID:

(d) (4 points) How could pass_input_to_function be modified to fix the vulnerability identified
in part (a)? Explain in 1 sentence.

(e) (4 points) Describe two ways the compiler, hardware, or operating system (on regular x86-64 Linux
machines) protect against buffer overflow attacks.

10

UW NetID:

Question 5: Processes (20 total points)

(a) Consider the following function that uses Linux’s fork, wait, and exit.

1 void fun_with_process() {
2 int status;
3 int x = 2;
4
5 if (fork() == 0) {
6 if (fork() == 0) {
7 x += 3;
8 printf(" %d ", x);
9 exit(0);

10 } else {
11 wait(&status);
12 x--;
13 printf(" %d ", x);
14 }
15 } else {
16 x++;
17 }
18 printf(" %d ", x);
19 exit(0);
20 }

i. (2 points) How many different processes will execute line 18?

ii. (8 points) What are all the different possible outputs (i.e. order of things printed) for this
code?

11

UW NetID:

(b) Recall that a context switch is when the operating system switches which process is executing.

For each of the following items, choose how frequently they would be the same before and after a
context switch. In other words, will they be the same in the old running process and the new one?

Assume that the operating system will choose a different process from the currently running process
upon a context switch, and that the processes do not share any virtual to physical page mappings.

i. (2 points) The running process ID

© Always © Sometimes © Never

ii. (2 points) The valid entries in the TLB

© Always © Sometimes © Never

iii. (2 points) The contents of the page table base register

© Always © Sometimes © Never

iv. (2 points) The contents of the L1 (physical) cache

© Always © Sometimes © Never

v. (2 points) The program executed by the process

© Always © Sometimes © Never

12

UW NetID:

Question 6: Caches (32 total points)

(a) (4 points) What is the difference between spatial and temporal locality? Answer in 1-2 sentences.

(b) (4 points) How can a write-back cache improve the performance of writes? Explain in 1-2 sentences.

(c) For each of the following sequences of memory accesses, determine the best cache parameters to
reduce miss rate. Some parameters will be given, so fill in the remaining one.

Assume that the cache is empty at the beginning of each sequence, the cache uses an LRU replace-
ment policy, and that all accesses are valid.

i. (3 points) 0x00, 0x08, 0x10, 0x18, 0x20, 0x28, 0x30, 0x38
Total cache size = 32 bytes
Associativity = 1 Block size =

ii. (3 points) 0x00, 0x20, 0x40, 0x80, 0x01, 0x21, 0x41, 0x81
Total cache size = 32 bytes
Block size = 8 bytes Associativity =

iii. (3 points) 0x00, 0x01, 0x38, 0x48, 0x00, 0x01
Total cache size = 16 bytes
Block size = 8 bytes Associativity =

13

UW NetID:

(d) In a typical cache, the most significant bits of an address make up the tag, the next bits make up
the index, and the least significant bits make up the offset. Call this the TIO scheme.

Suppose we are considering switching to a cache with a ITO scheme, where the position of the index
and tag are swapped. The width of the index and tag stay the same.

Consider the execution of the following function on a direct mapped cache of total size 128 bytes
with 16 sets and a block size of 8 bytes. Assume that i and array (the pointer) are stored in
registers, array is 8-byte aligned, and no errors will occur during execution.

void loopy(int array[32]) {
int i;
for (i = 0; i < 32; i++)

array[i] += 3;
for (i = 0; i < 32; i++)

array[i] -= 3;
}

The next 2 questions ask about a single execution of loopy, starting with an empty cache, under
the normal TIO scheme.
Phrase your answer as a number of misses followed by a description of the miss kind, in order of
occurence. Example: “4 compulsory misses, then 10 conflict misses.” Hint : there are no capacity
misses.

i. (2 points) How many misses did the first loop take? What kinds were they?

ii. (2 points) How many misses did the second loop take? What kinds were they?

The next 2 questions ask about a single execution of loopy, starting with an empty cache, under
the proposed ITO scheme.

iii. (2 points) How many misses did the first loop take? What kinds were they?

iv. (2 points) How many misses did the second loop take? What kinds were they?

v. (7 points) In general, why might a ITO cache be less effective than a TIO cache? Hint: consider
adjacent blocks of memory. (1-2 sentences)

14

UW NetID:

Question 7: Virtual Memory (30 total points)

(a) Virtual memory is an extremely powerful abstraction with many benefits. For each benefit listed
below, provide a brief (1-2 sentence) explanation of how VM accomplishes it.

i. (4 points) Protecting processes from one another.

ii. (4 points) Allow programs to use more memory than exists on the machine.

(b) Last month, I turned off my desktop computer, opened it up, added some more RAM (doubling it
from 16GiB to 32GiB), closed it, and turned it back on.

i. (4 points) Did the size of the virtual address space change? Why or why not?

ii. (4 points) Did the size of the physical address space change? Why or why not?

iii. (4 points) After the RAM upgrade, I was able to have more programs open (and thus using
memory) before performance began to degrade. Why did this happen? What was causing
performance to drop after a certain number of programs were running? (1-2 sentences)

15

UW NetID:

(c) Imagine the following system:

• 16-bit virtual addresses, 10-bit physical addresses.

• A page size of 16 bytes.

• 2-way set associative TLB with 8 total entries.

• All page table entries NOT in the initial TLB start as invalid.

i. (4 points) Compute the following quantities

Page offset bits:

VPN bits:

PPN bits:

TLB index bits:

ii. (6 points) The TLB has the following state:

Set Tag PPN Valid Tag PPN Valid
0 0x1B2 – 0 0x283 0x3A 1
1 0x2FB 0x29 1 0x0E8 0x1D 1
2 0x004 – 0 0x346 – 0
3 0x3F4 0x1B 1 0x257 0x36 1

Fill in the associated information for the following accesses to virtual addresses. (enter n/a if
the answer cannot be determined):

Virtual Address TLB Hit? Page Fault? PPN

0x3A17

0x0123

16

UW NetID:

Question 8: Allocation (20 total points)

(a) (5 points) In some versions of C, you can make dynamically-sized allocations on the stack. In the
listing below, the array on_the_stack of ints is stored on the stack inside foo’s stack frame.

int foo(unsigned n) {
int on_the_stack[n];
for (int i = 0; i < n; i++) {

on_the_stack[i] = 0;
}
// do something with on_the_stack

}

Does this replace the need for malloc? Explain in 1-2 sentences.

(b) (5 points) Suppose I write and use the following code in a version of C with a mark-and-sweep
garbage collector.

long do_it(int* p) {
return ˜(long)p;

}

int* undo_it(long l) {
return (int*)(˜p);

}

void bad_stuff() {
long stash = do_it(malloc(sizeof(int)));

// run a bunch of code

int *p = undo_it(stash);

*p = 0xC0FFEE;
}

In 1-2 sentences, explain how this is potentially dangerous.

17

UW NetID:

(c) i. (4 points) Describe 2 advantages of an implicit free list allocator over an explicit list allocator.
(1-2 sentences)

ii. (6 points) Describe the major advantage of an explicit free list allocator over an implicit list
allocator. Also describe the situation in which this advantage is very large. (1-2 sentences)

18

UW NetID:

Question 9: Memory Bugs (20 total points)

Consider the following C code where main shows the intended use of the functions relating to struct foo.

1 struct foo {
2 int x;
3 int y;
4 int* p;
5 };
6
7 struct foo* make_foo() {
8 struct foo* foo = malloc(sizeof(struct foo*));
9

10 foo->x = foo->y * 2;
11 foo->y = 2;
12
13 foo->p = malloc(sizeof(int));
14 *(foo->p) = 42;
15
16 return foo;
17 }
18
19 void update_foo(struct foo* foo) {
20 int num = *(foo->p);
21 foo->p = malloc(sizeof(int));
22 *(foo->p) = num + 1;
23 }
24
25 void free_foo(struct foo* foo) {
26 free(foo);
27 free(foo->p);
28 }
29
30 int main() {
31 struct foo* f = make_foo();
32 for(int i = 0; i < 1000000; i++) {
33 update_foo(f);
34 }
35 free_foo(f);
36 }

Questions are on the following page.

19

UW NetID:

(a) (10 points) The function make_foo has two memory-related bugs. Find them and briefly describe
them (no more than 1 sentence each).

(b) (5 points) The function update_foo also has a memory-related bug. Find it briefly describe it
(no more than 1 sentence).

(c) (5 points) The function free_foo also has a memory-related bug. Find it briefly describe it (no
more than 1 sentence).

20

UW NetID:

Question 10: Extra Credit (10 total points)

unsigned mystery(unsigned x) {
x = x - 1;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
x = x + 1
return x;

}

(a) (5 points) Show the step-by-step values of x for the execution of mystery(34). Fill in the blanks
with value of x after that line runs. Write in binary, and only show the bottom 8 bits.
Note that 34 == 0x22 == 0b 0010 0010.

x = x - 1;

x = x | (x >> 1);

x = x | (x >> 2);

x = x | (x >> 4);

x = x | (x >> 8);

x = x | (x >> 16);

x = x + 1;

(b) (5 points) Describe succinctly what the code above does.

21

UW NetID:

This page intentionally left blank.

22

CSE 351 Reference Sheet (Final)
Binary Decimal Hex

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Assembly Instructions
mov a, b Copy from a to b.
movs a, b Copy from a to b with sign extension. Needs two width specifiers.
movz a, b Copy from a to b with zero extension. Needs two width specifiers.
lea a, b Compute address and store in b.

Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.
push src Push src onto the stack and decrement stack pointer.

pop dst Pop from the stack into dst and increment stack pointer.

call <func> Push return address onto stack and jump to a procedure.
ret Pop return address and jump there.
add a, b Add from a to b and store in b (and sets flags).
sub a, b Subtract a from b (compute b-a) and store in b (and sets flags).
imul a, b Multiply a and b and store in b (and sets flags).
and a, b Bitwise AND of a and b, store in b (and sets flags).
sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).
shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).
shl a, b Shift value of b left by a bits, store in b (and sets flags).
cmp a, b Compare b with a (compute b-a and set condition codes based on result).
test a, b Bitwise AND of a and b and set condition codes based on result.
jmp <label> Unconditional jump to address.
j* <label> Conditional jump based on condition codes (more on next page).
set* a Set byte based on condition codes.

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

Sizes
C type Suffix Size

char b 1

short w 2

int l 4

long q 8

Conditionals
Instruction (op) s, d test a, b cmp a, b

je “Equal” d (op) s == 0 b & a == 0 b == a

jne “Not equal” d (op) s != 0 b & a != 0 b != a

js “Sign” (negative) d (op) s < 0 b & a < 0 b-a < 0

jns (non‐negative) d (op) s >= 0 b & a >= 0 b-a >= 0

jg “Greater” d (op) s > 0 b & a > 0 b > a

jge “Greater or equal” d (op) s >= 0 b & a >= 0 b >= a

jl “Less” d (op) s < 0 b & a < 0 b < a

jle “Less or equal” d (op) s <= 0 b & a <= 0 b <= a

ja “Above” (unsigned >) d (op) s > 0U b & a < 0U b > a

jb “Below” (unsigned >) d (op) s < 0U b & a > 0U b < a

Registers C Functions
 Name of “virtual” register

Name Convention
Lowest
4 bytes

Lowest
2 bytes

Lowest
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack Pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Virtual Memory Acronyms
MMU Memory Management Unit VPO Virtual Page Offset TLBT TLB Tag

VA Virtual Address PPO Physical Page Offset TLBI TLB Index

PA Physical Address PT Page Table CT Cache Tag

VPN Virtual Page Number PTE Page Table Entry CI Cache Index

PPN Physical Page Number PTBR Page Table Base Register CO Cache Offset

void* malloc(size_t size):
Allocate size bytes from the heap.

void* calloc(size_t n, size_t size):
Allocate n*size bytes and initialize to 0.

void free(void* ptr):
Free the memory space pointed to by ptr.

size_t sizeof(type):
Returns the size of a given type (in bytes).

char* gets(char* s):
Reads a line from stdin into the buffer.

pid_t fork():
Create a new child process (duplicates parent).

pid_t wait(int* status):
Blocks calling process until any child process

exits.

int execv(char* path, char* argv[]):
Replace current process image with new image.

