
University of Washington — Computer Science & Engineering

CSE 351, Summer 2019 — Midterm Exam
Friday, July 26th, 2019

Name:

UW NetID: @uw.edu

Name of student to your left:

Name of student to your right:

I certify that all work is my own. I had no prior knowledge of exam contents
nor will I share the contents with any student in CSE 351 who has not
yet taken the exam. Violation of these terms may result in a failing grade.
(Please sign below.)

Signature:

Instructions

• You may fill out this page, but do not turn the page until 10:50am.
• This exam is closed-book, except for one handwritten double-sided 8.5×11” note sheet. Cell

phones, smart watches, notes written underneath your sleeves, Google Glasses, Hololens,
neural links, and any other futuristic devices are not allowed.

• You have 60 minutes to complete the exam. Please stop promptly at 11:50am.

• The last page of the exam is a reference sheet. Please detach it before turning in your exam.

• Write your UW NetID (not your student ID number) on the top-right corner of each page.

• We will scan your exams to grade them. Please write clearly and legibly.

• There are 6 questions, totaling 80 points, across 8 pages (including this one).

Advice

• Read the questions thoroughly before answering.

• Write down your thoughts and intermediate steps so that you can get partial credit. But be
sure to clearly indicate your final answer.

• Questions are not necessarily in order of difficulty. Skip around or read ahead. Make sure
you have a chance to attempt all the questions.

• Relax. You are here to learn .

Question: 1 2 3 4 5 6 Total

Points: 17 15 15 16 5 12 80

UW NetID: @uw.edu

1. (17 points) Number Representation

In an effort to save space (and sanity), we’ve invented a new integer number type called
int ten that is only 10 bits wide. For this question, you may write your answers as a sum of
powers of two unless otherwise specified.

Suppose we define a new int ten variable:

int_ten x = 0b1110001001;

(a) (1 point) Write down x in hexadecimal.

Solution: 0x389

(b) (1 point) Interpreting x as an unsigned 10-bit integer, what is its decimal value?

Solution: 905. (29 + 28 + 27 + 23 + 20)

(c) (2 points) Interpreting x as a (signed) two’s complement 10-bit integer, what is its decimal
value?

Solution: −119. (−29 + 28 + 27 + 23 + 20)

Now we’ve defined another new floating-point number type, float ten, that is also 10 bits
wide. This floating-point type uses 1 bit for the sign, 3 bits for the exponent, and 6 bits for the
mantissa. The layout of sign, exponent, and mantissa, and representation of special values, is
the same as for a 32-bit IEEE floating-point number.

(d) (2 points) What is the bias for float ten numbers?

Solution: The bias is 2E−1 − 1. The exponent is 3 bits, so the bias is 22 − 1 = 3.

(e) (3 points) What decimal number does the bit pattern 0b1110001001 represent in this
floating point encoding?

Solution: E is 1102, which is 610. We subtract the bias, so the exponent is 6 − 3 = 3.
The sign bit is 1 so the number is negative. In binary scientific notation: −1.001001∗23.
−1001.0012 = −9.12510.

Page 2

UW NetID: @uw.edu

Consider this silly C code:

1 #include <math.h>

2
3 void gillyweed () {

4 float hagrid = (float) (1 << 24);

5 while (hagrid < INFINITY) {

6 hagrid += 1.0;

7 }

8 }

(f) (2 points) On line 4, what decimal value is hagrid set to? Explain in 1-2 sentences.

Solution: hagrid will be set to the value 224, since when casting from an integer
value to a floating-point value, the bits will be changed so that the value remains the
same.

(g) (3 points) Will gillyweed ever return? Explain in 1-2 sentences.

Solution: No. 224 is more than 23 bits away from 1 = 20 and we only have 23 bits in
the mantissa, so it will be rounded off.

(h) (3 points) If we change hagrid to be a double instead of a float, will gillyweed ever
return? Explain in 1-2 sentences.

Solution: No. Though the 1 would not be immediately rounded off, continuously
adding 1 to any number will eventually cause it to be rounded off as the number
grows sufficiently large.

Why do assembly programmers need to wear scuba masks? . . .

Page 3

UW NetID: @uw.edu

2. (15 points) Pointers & Memory

For this question, refer to the C assignments and memory diagram below, with addresses in-
creasing left-to-right and top-to-bottom. Remember that x86-64 machines are little endian.

int *i = 0x10;

char *c = 0x2c;

long *l = 0x08;

Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 1e 00 00 00 00 00 00 00

0x08 aa bb cc dd ee ff 00 11

0x10 08 07 06 05 04 03 02 01

0x18 53 61 6d 20 69 73 20 73

0x20 75 70 65 72 20 63 6f 6f

0x28 6c 2e 9d ab b6 2d e7 99

(a) (10 points) Fill in the C type and hex value for each of the following C expressions. As-
sume that 0x00 is a valid memory address (i.e., not a null pointer).

C Expression C Type Hex Value

*i int 0x05060708

l+1 long * 0x10

*(c+2) char 0xe7

i[-2] int 0xddccbbaa

** ((short **) (l-1)) short 0x7320

(b) (5 points) Determine the final value, in hex, of each of these registers after executing the
instructions shown on the left. Assume that all registers start with the value 0x0, except
%rdi, which initially has the value 0xc. Write out bytes to fill out the entire width of the
specified register.

Register Hex Value

%rdi 0x000000000000000c

movw %di, %bx %bx 0x000c

leal (%edi,%edi,2), %eax %eax 0x00000024

movswl (%rdi), %edx %rdx 0x00000000ffffffee

. . . because they work below C level!

Page 4

UW NetID: @uw.edu

3. (15 points) C & Assembly

You are given the following mysterious-looking function in x86-64 assembly:

mystery:

.L4:

movzbl (%rdi), %eax

testb %al , %al

je .L2

leal -97(%rax), %edx

cmpb $25 , %dl

ja .L3

subl $32 , %eax

movb %al , (%rdi)

.L3:

addq $1 , %rdi

jmp .L4

.L2:

rep ret

(a) (2 points) What variable type is %rdi in the corresponding C program?

(a) char *

(b) (9 points) Fill in the missing parts of the C code that is equivalent to the assembly above:

void mystery((answer to a) x) {

while (*x != '\0' or 0) {

if (*x >= 97 && *x <= 122) {

*x = *x - 32 ;

}

x++ ;

}

}

(c) (4 points) On a high level, what does this function accomplish? Explain in 1-2 sentences.
Hint: the ASCII character code for the letter 'a' is 97, and the code for 'A' is 65.

Solution: It converts letters in a string from lowercase to uppercase. (There’s room
for partial credit here.)

Page 5

UW NetID: @uw.edu

4. (16 points) Procedures & The Stack

The recursive function fact calculates the factorial of its argument n. This function, along with
its x86-64 assembly, is shown below.

1 long fact(long n) {

2 if (n < 2)

3 return 1; // breakpoint here

4 else

5 return n * fact(n-1);

6 }

1 00000000004004 b7 <fact >:

2 4004b7: cmp $0x1 ,%rdi
3 4004bb: jg 4004c3 <fact+0xc >

4 4004bd: mov $0x1 ,%eax
5 4004c2: retq # breakpoint here

6 4004c3: push %rbx

7 4004c4: mov %rdi ,%rbx

8 4004c7: lea -0x1(%rdi),%rdi

9 4004cb: callq 4004b7 <fact >

10 4004d0: imul %rbx ,%rax

11 4004d4: pop %rbx

12 4004d5: retq

(a) (2 points) The addresses shown above are part of which section of memory?

(a) Instructions or code

(b) (2 points) During a recursive call to fact, what return address is pushed on to the stack?
Answer in hex.

(b) 0x4004d0

(c) (2 points) Where in this code is n saved before fact makes a recursive call? Give the
address of the corresponding assembly instruction.

(c) 0x400c4

As a matter of fact, this question continues on the next page. . .

Page 6

UW NetID: @uw.edu

(d) (10 points) Assume that main calls fact(4). Fill in a memory diagram of the stack when
we hit the breakpoint shown above (on C line 3, or assembly line 5). Include a brief
description (1-3 words) of the each entry, as well as its value (if known). You may not
need all the lines provided.

Address Description Value

0x7fffffffdce8 return to main unknown

0x7fffffffdce0 saved %rbx from main unknown

0x7fffffffdcd8 return to fact 0x4004d0

0x7fffffffdcd0 saved %rbx 4

0x7fffffffdcc8 return to fact 0x4004d0

0x7fffffffdcc0 saved %rbx 3

0x7fffffffdcb8 return to fact 0x4004d0

0x7fffffffdcb0 unknown unknown

5. (5 points) Building an Executable

(a) (1 point) Give an example of a valid assembly instruction that the assembler cannot fully
translate to completed machine code.

(a) call, jumps, labels

(b) (1 point) Which table in an object file holds information about the methods, global vari-
ables, and other data defined in that file?

(b) symbol table

(c) (3 points) In order, what four steps are required to produce and run a completed binary
from C source files?

Solution: Compiling, Assembling, Linking, Loading (0.5 pt for each step, 1 pt for
correct order)

Page 7

UW NetID: @uw.edu

6. (12 points) System & Architecture Design

Your intrepid instructor is founding a new company, WolfBytesTM, where he plans to sell CPUs
that implement the x86-64 instruction set—but even better than Intel does! He needs your help
to figure out how to design these chips!

(a) (3 points) Sam decides that Intel hasn’t put enough registers in their chips. Therefore, he
decides to build in separate registers for each different data size (e.g., %rax and %eax now
refer to entirely different registers and don’t share any space). This will allow compilers
to have so much more rapidly-accessible space in the CPU! Does this still implement the
x86-64 instruction set? Explain briefly (1-2 sentences).

Solution: No. Existing code will not run correctly with these changes, since it will
expect that referring to registers by their different names will still give you (partial)
views of the same data.

(b) (3 points) Instead, Sam decides to double the size of each register, so that we can store
larger data types. He gives these new 128-bit registers new names, and doesn’t change
any of the existing register names (e.g., %rdi still refers to a 64-bit register, etc.). Will this
remain compatible with x86-64 programs? Explain briefly (1-2 sentences).

Solution: Yes. Existing x86-64 code will still run correctly, it just won’t take advan-
tage of the larger registers.

(c) (4 points) Try as he might, Sam simply cannot figure out how Intel made their imul (in-
teger multiply) instruction run so quickly. He decides that he will have to implement
multiplication in his chips by using addition instead. Therefore, his imul instruction does
produce the right results, but it runs much more slowly. Is this still a valid x86-64 imple-
mentation? Explain briefly (1-2 sentences).

Solution: Yes, the architecture doesn’t specify anything about speed.

(d) (2 points) What is your favorite text editor?
© emacs © ubertext © ed

√
wolfedit © pico © vim © nano

Did you write your UW NetID on the top-right corner of each page?

Page 8

