Please read through the entire examination first!

- You have 60 minutes for this exam. Don’t spend too much time on any one problem!
- The last page is a reference sheet. Feel free to detach it from the rest of the exam.
- The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones).

There are 5 problems for a total of 53 points. The point value of each problem is indicated in the table below. Write your answer neatly in the spaces provided.

Please do not ask or provide anything to anyone else in the class during the exam. Make sure to ask clarification questions early so that both you and the others may benefit as much as possible from the answers.

Good Luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Topic</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integers & Floats</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Hardware to Software</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>C & Assembly</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Stack Discipline</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Pointers & Memory</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>
1. Integers and Floats (13 points total)
We define two new types as follows:

- **Ten_ints** are 10-bit signed two’s complement integers.
- **Ten_floats** are 10-bit floating point numbers with 4 bits for the exponent, 5 bits for the fraction, and 1 bit for the sign. **Ten_floats** are similar to IEEE floating point as far as layout of sign, exponent and fraction and represent special values (e.g. 0, pos and neg infinity, NAN) similar to how they are represented in 32 bit IEEE floating point.

a) (2 pts) What is the most negative number we can represent with **Ten_ints**?

Give the bit pattern in binary:

Give the value in decimal:

b) (4 pts) Convert the following **Ten_floats** bit pattern into decimal.

Bit pattern in binary: 0 1011 11000

Give the bias for **Ten_float**

Give the value in decimal:

c) (2 pts) What is the result in binary if you add 1 to the maximum positive **Ten_ints** number?

In a sentence, describe what is happening in this case:
d) (5 pts) Assuming rules similar to those for conversions between IEEE floats and ints and addition in C, **indicate whether the following statements are True or False**.

i. **TRUE / FALSE**: Given a Ten_float that is negative, it is possible to lose precision when converting from a Ten_float to a Ten_int.

ii. **TRUE / FALSE**: The largest positive number representable as a Ten_int < the largest non-infinite positive number representable as a Ten_float.

iii. **TRUE / FALSE**: Given a Ten_int that is positive, it is possible to lose precision when converting it to a Ten_float.

iv. **TRUE / FALSE**: Adding a negative Ten_float to a positive Ten_float will never result in a loss of precision.

v. **TRUE / FALSE**: Adding a negative Ten_int to a positive Ten_int will never result in overflow.
2. Hardware to Software (8 points total)

a) (2 pts) Give one disadvantage of sign magnitude representation of ints compared to two’s complement representation of ints.

b) (2 pts) What does having a standardized calling convention enable that would not be possible otherwise?

c) (4 pts) Your friend proposes that the next generation of x86 machines only allow you to refer to the full 64-bit versions of registers (we could no longer refer to only a portion of a register and instructions would all have the suffix q). For example, instructions like

\[
\text{movb } (\%rax), \$dil \quad \text{would instead have to be: } \text{movq } (\%rax), \$rdi
\]

Give one drawback and one benefit of this approach.
3. C and Assembly (11 points total)
You are given the following x86-64 assembly function:

```assembly
mystery:
    movl    $0, %edx
    movl    $0, %eax
.L3:
    cmpl    %esi, %edx
    jge     .L1
    movslq  %edx, %rcx
    addl    (%rdi,%rcx,4), %eax
    addl    $1, %edx
    jmp     .L3
.L1:
    rep ret
```

(a) (1 pt) What variable type would `%rdi` be in the corresponding C program?

(b) (1 pt) What variable type would `%rsi` be in the corresponding C program?

(c) (7 pts) Fill in the missing C code that is equivalent to the x86-64 assembly above:

```c
___________ mystery( (answer to a) rdi, (answer to b) rsi) {
    _______ eax = ___________
    return eax;
}
```

d) (2 pts) In 1 sentence, describe what this function is doing?
4. Stack Discipline (12 points total)

Examine the following recursive function:

```c
long husky(long *x, long y) {
    long woof = 0;
    if (y < 3) {
        return *x * 3;
    } else {
        woof = y + 1;
        return woof + husky(&woof, y - 1);
    }
}
```

Here is the x86_64 assembly for the same function:

```assembly
000000000040057a <husky>:
    40057a: cmp $0x2,%rsi
    40057e: jg 400588 <husky+0xe>
    400580: mov (%rdi),%rax
    400583: lea (%rax,%rax,2),%rax
    400587: retq
    400588: push %rbx
    400589: sub $0x10,%rsp
    40058d: lea 0x1(%rsi),%rbx
    400591: mov %rbx,0x8(%rsp)
    400596: sub $0x1,%rsi
    400599: lea 0x8(%rsp),%rdi
    40059b: callq 40057a <husky>
    4005a4: add %rbx,%rax
    4005a7: add $0x10,%rsp
    4005ab: pop %rbx
    4005ac: retq
```

We call `husky` from `main()`, with registers `%rdi = 0x7ff...ffbd8` and `%rsi = 4`. The value stored at address `0x7ff...ffbd8` is the long value 16 (0x10). We set a breakpoint at “return *x * 3” (i.e. we are just about to return from `husky()` without making another recursive call). We have executed the `lea` instruction at `400583` but have not yet executed the `retq`.

Fill in the register values on the next page and draw what the stack will look like when the program hits that breakpoint. Give both a description of the item stored at that location and the value stored at that location. If a location on the stack is not used, write “unused” in the Description for that address and put “-----” for its Value. You may list the Values in hex or decimal. Unless preceded by `0x` we will assume decimal. It is fine to use `f...f` for sequences of `f`’s as shown for `%rdi`. Add more rows to the table as needed. Also, fill in the box on the next page to include the value this call to `husky` will finally return to `main`.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>40057a</td>
<td>cmp</td>
<td>$0x2,%rsi</td>
</tr>
<tr>
<td>40057e</td>
<td>jg</td>
<td>400588 <husky+0xe></td>
</tr>
<tr>
<td>400580</td>
<td>mov</td>
<td>(%rdi),%rax</td>
</tr>
<tr>
<td>400583</td>
<td>lea</td>
<td>(%rax,%rax,2),%rax</td>
</tr>
<tr>
<td>400587</td>
<td>retq</td>
<td></td>
</tr>
<tr>
<td>400588</td>
<td>push</td>
<td>%rbx</td>
</tr>
<tr>
<td>400589</td>
<td>sub</td>
<td>$0x10,%rsp</td>
</tr>
<tr>
<td>40058d</td>
<td>lea</td>
<td>0x1(%rsi),%rbx</td>
</tr>
<tr>
<td>400591</td>
<td>mov</td>
<td>%rbx,0x8(%rsp)</td>
</tr>
<tr>
<td>400596</td>
<td>sub</td>
<td>$0x1,%rsi</td>
</tr>
<tr>
<td>400599</td>
<td>lea</td>
<td>0x8(%rsp),%rdi</td>
</tr>
<tr>
<td>40059b</td>
<td>callq</td>
<td>40057a <husky></td>
</tr>
<tr>
<td>4005a4</td>
<td>add</td>
<td>%rbx,%rax</td>
</tr>
<tr>
<td>4005a7</td>
<td>add</td>
<td>$0x10,%rsp</td>
</tr>
<tr>
<td>4005ab</td>
<td>pop</td>
<td>%rbx</td>
</tr>
<tr>
<td>4005ac</td>
<td>retq</td>
<td></td>
</tr>
</tbody>
</table>

6 of 8
<table>
<thead>
<tr>
<th>Register</th>
<th>Original Value</th>
<th>Value at Breakpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsp</td>
<td>0x7ff...ffbd0</td>
<td></td>
</tr>
<tr>
<td>rdi</td>
<td>0x7ff...ffbd8</td>
<td></td>
</tr>
<tr>
<td>rsi</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>rbx</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>rax</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

DON’T FORGET

What value is **finally** returned to **main** by this call?
5. Pointers, Memory & Registers (9 points total)

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and initial state of memory (values in hex) shown below:

<table>
<thead>
<tr>
<th>Address</th>
<th>+0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
<th>+6</th>
<th>+7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>AB</td>
<td>EE</td>
<td>1E</td>
<td>AC</td>
<td>D5</td>
<td>8E</td>
<td>10</td>
<td>E7</td>
</tr>
<tr>
<td>0x08</td>
<td>42</td>
<td>84</td>
<td>32</td>
<td>2D</td>
<td>A5</td>
<td>F2</td>
<td>3A</td>
<td>CA</td>
</tr>
<tr>
<td>0x10</td>
<td>83</td>
<td>14</td>
<td>53</td>
<td>B9</td>
<td>70</td>
<td>03</td>
<td>F4</td>
<td>31</td>
</tr>
<tr>
<td>0x18</td>
<td>01</td>
<td>20</td>
<td>FE</td>
<td>34</td>
<td>46</td>
<td>E4</td>
<td>FC</td>
<td>52</td>
</tr>
<tr>
<td>0x20</td>
<td>4C</td>
<td>A8</td>
<td>B5</td>
<td>C3</td>
<td>D0</td>
<td>ED</td>
<td>53</td>
<td>17</td>
</tr>
</tbody>
</table>

long* yp = 0x18;
int* ip = 0x10;
short* sp = 0x08;

a) (5 pts) Fill in the type and value for each of the following C expressions. If a value cannot be determined from the given information answer UNKNOWN.

<table>
<thead>
<tr>
<th>Expression (in C)</th>
<th>Type</th>
<th>Value (in hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*(ip + 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yp[-1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*sp) + 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&(ip[1])</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) (4 pts) What are the values (in hex) stored in each register shown after the following x86 instructions are executed? Remember to use the appropriate bit widths.

```
movw (,%rax,4), %bx
movswq 4(,%rax,2), %rcx
leaq (%rsi,%rax,8), %rdi
addl 4(%rax,%rax), %esi
```