
 1 of 8  

CSE 351 Spring 2019 – Midterm Exam (3 May 2019)  

  

 
 

Please read through the entire examination first!   

 You have 60 minutes for this exam. Don’t spend too much time on any one problem! 

 The last page is a reference sheet.  Feel free to detach it from the rest of the exam. 

 The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no 

mobile phones).  

 

There are 5 problems for a total of 53 points.  The point value of each problem is indicated in the 

table below. Write your answer neatly in the spaces provided.   

 

Please do not ask or provide anything to anyone else in the class during the exam.  Make sure to 

ask clarification questions early so that both you and the others may benefit as much as possible 

from the answers.  

 

Good Luck! 

 

 
 

 

Your Name:____Sample Solution________ 

UWNet ID:__________________________ 

  

 

 

 

 

  

Problem Topic Max Score 

1 Integers & Floats 13 

2 Hardware to Software 8 

3 C & Assembly 11 

4 Stack Discipline  12 

5 Pointers & Memory 9 

TOTAL  53 
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1. Integers and Floats (13 points total) 

We define two new types as follows: 

  Ten_ints are 10-bit signed two’s complement integers.  

  Ten_floats are 10-bit floating point numbers with 4 bits for the exponent, 5 bits for the 

fraction, and 1 bit for the sign.  Ten_floats are similar to IEEE floating point as far as layout of 

sign, exponent and fraction and represent special values (e.g. 0, pos and neg infinity, NAN) similar 

to how they are represented in 32 bit IEEE floating point. 

 

a) (2 pts) What is the most negative number we can represent with Ten_ints? 

 

Give the bit pattern in binary:  

                                                         1000000000 

 

Give the value in decimal:  

 

-(29) =-512        -512 

 

 

 

 

b) (4 pts) Convert the following Ten_floats bit pattern into decimal.  

 

Bit pattern in binary: 0 1011 11000 

 

Give the bias for Ten_float 

          7 

24-1 – 1 = 8 – 1 = 7 
 

Give the value in decimal:      28 

 

Exponent = 11 – 7 = 4 

Value = 0b1.11 * 24  = 0b11100 = 16 + 8 + 4 = 28 

 

c) (2 pts) What is the result in binary if you add 1 to the maximum positive Ten_ints number? 

 

0 1111 1111 + 1 = (the most negative number) 

10000 00000 

 

 

In a sentence, describe what is happening in this case: 

 

This is overflow: adding a positive number to a positive number, resulting in a negative 

number. 
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d) (5 pts) Assuming rules similar to those for conversions between IEEE floats and ints and 

addition in C, indicate whether the following statements are True or False. 

 TRUE  /  FALSE:   Given a Ten_float that is negative, it is possible to lose 

precision when converting from a Ten_float to a Ten_int. 

 TRUE  /  FALSE:   The largest positive number representable as a Ten_int < the 

largest non-infinite positive number representable as a Ten_float.  

 TRUE  /  FALSE:   Given a Ten_int that is positive, it is possible to lose precision 

when converting it to a Ten_float.  

 TRUE  /  FALSE:   Adding a negative Ten_float to a positive Ten_float will 

never result in a loss of precision.  

 TRUE  /  FALSE:   Adding a negative Ten_int to a positive Ten_int will never 

result in overflow.  
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2. Hardware to Software (8 points total) 

 

a) (2 pts) Give one disadvantage of sign magnitude representation of ints compared to two’s 

complement representation of ints. 

 

 

 Two representations of 0 (bad for checking equality) 

 Arithmetic is cumbersome. Example: 4-3 != 4+(-3) 

 

 

b) (2 pts) What does having a standardized calling convention enable that would not be possible 

otherwise? 

 

 

Code generated by one compiler can be called by code generated by another compiler.  

This makes it possible to call library code.  

 

 

 

 

c) (4 pts) Your friend proposes that the next generation of x86 machines only allow you to refer 

to the full 64-bit versions of registers (we could no longer refer to only a portion of a register 

and instructions would all have the suffix q). For example, instructions like 

 movb (%rax), $dil     would instead have to be:     movq (%rax), $rdi 

 

Give one drawback and one benefit of this approach. 

 

Drawbacks: 

 All datatypes are now the same size, overall memory use by your data is likely to 

be more 

 X86 programs already written may no longer work anymore, no backwards 

compatibility  

 

Benefits: 

 No need to worry about alignment of different type sizes (since there is in effect 

only one size) 

 Addresses could refer to 8 bytes instead of 1 byte, since there is no need or ability 

to access smaller chunks of memory, so your address space could become 8x 

larger without changing the bit width of an address 

 Machine Encoding of instructions may be smaller – no need to specify suffix or as 

many possible registers 
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3. C and Assembly (11 points total) 

You are given the following x86-64 assembly function: 

 
mystery: 

        movl    $0, %edx 

        movl    $0, %eax 

.L3: 

        cmpl    %esi, %edx 

        jge     .L1 

        movslq  %edx, %rcx 

        addl    (%rdi,%rcx,4), %eax 

        addl    $1, %edx 

        jmp     .L3 

.L1: 

        rep ret 

 

 

a) (1 pt) What variable type would %rdi be in the corresponding C program? 

 
int* 

 

b) (1 pt) What variable type would %rsi be in the corresponding C program? 

 
int 

 

c) (7 pts) Fill in the missing C code that is equivalent to the x86-64 assembly above: 

 

 
______int_____ mystery( (answer to a) rdi, (answer to b) rsi) { 

 

 ___ int _____ eax = ___0 ;________ 

 

 

for (int edx = 0; edx < rsi; edx++) { 

 

  eax += rdi[edx]; 

 } 

 

 

 

 

 return eax; 

} 

 

d) (2 pts) In 1 sentence, describe what this function is doing?  

 

Summing the first rsi elements of the int array starting at rdi 
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4. Stack Discipline (12 points total) 

 

Examine the following recursive function: 

 
long husky(long *x, long y) { 

   long woof = 0; 

   if (y < 3) {      

    return *x * 3;  

  } else { 

    woof = y + 1; 

    return woof + husky(&woof, y - 1);  

  } 

} 

Here is the x86_64 assembly for the same function: 

 
000000000040057a <husky>: 

  40057a:  cmp    $0x2,%rsi 

  40057e:  jg     400588 <husky+0xe> 

  400580:  mov    (%rdi),%rax 

  400583:  lea    (%rax,%rax,2),%rax 

  400587:  retq    

  400588:  push   %rbx 

  400589:  sub    $0x10,%rsp 

  40058d:  lea    0x1(%rsi),%rbx 

  400591:  mov    %rbx,0x8(%rsp) 

  400596:  sub    $0x1,%rsi 

  40059a:  lea    0x8(%rsp),%rdi 

  40059f:  callq  40057a <husky> 

  4005a4:  add    %rbx,%rax 

  4005a7:  add    $0x10,%rsp 

  4005ab:  pop    %rbx 

  4005ac:  retq    

 

We call husky from main(), with registers %rdi = 0x7ff…ffbd8 and %rsi = 4. The value 

stored at address 0x7ff…ffbd8 is the long value 16 (0x10). We set a breakpoint at  

“return *x * 3” (i.e. we are just about to return from husky() without making another 

recursive call). We have executed the lea instruction at 400583 but have not yet executed the 

retq.  

 

Fill in the register values on the next page and draw what the stack will look like when the 

program hits that breakpoint. Give both a description of the item stored at that location and the 

value stored at that location. If a location on the stack is not used, write “unused” in the Description 

for that address and put “-----” for its Value. You may list the Values in hex or decimal. Unless 

preceded by 0x we will assume decimal. It is fine to use f…f for sequences of f’s as shown for 

%rdi. Add more rows to the table as needed.  Also, fill in the box on the next page to include the 

value this call to husky will finally return to main. 
  

Breakpoint 
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Register Original Value Value at Breakpoint 

rsp 0x7ff…ffbd0 0x7ffffffffffffb90 

rdi 0x7ff…ffbd8 0x7ffffffffffffba0 

rsi 4 2 

rbx 9 4 

rax 7 12 

 

 

 

  

Memory address on stack Name/description of item Value 

0x7ffffffffffffbd8 Local var in main   0x10 

0x7ffffffffffffbd0 Return address back to main   0x400975 

0x7ffffffffffffbc8 Old rbx 9 

0x7ffffffffffffbc0 woof 5 

0x7ffffffffffffbb8 Unused Unknown 

0x7ffffffffffffbb0 
Return address back to 
husky 

0x4005a4 

0x7ffffffffffffba8 Old rbx 5 

0x7ffffffffffffba0 woof 4 

0x7ffffffffffffb98 Unused Unknown 

0x7ffffffffffffb90 
Return address back to  
husky 

0x4005a4 

0x7ffffffffffffb88   

0x7ffffffffffffb80   

0x7ffffffffffffb78   

0x7ffffffffffffb70   

0x7ffffffffffffb68   

0x7ffffffffffffb60   

What value is finally returned to main by this call? 21 
DON’T  

FORGET 
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5. Pointers, Memory & Registers (9 points total) 

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and 

initial state of memory (values in hex) shown below: 

 

Address +0 +1 +2 +3 +4 +5 +6 +7 

0x00 AB EE 1E AC D5 8E 10 E7 

0x08 42 84 32 2D A5 F2 3A CA 

0x10 83 14 53 B9 70 03 F4 31 

0x18 01 20 FE 34 46 E4 FC 52 

0x20 4C A8 B5 C3 D0 ED 53 17 

long* yp = 0x18; 

int* ip = 0x10; 

short* sp = 0x08; 
 

a) (5 pts) Fill in the type and value for each of the following C expressions. If a value cannot be 

determined from the given information answer UNKNOWN. 

 

Expression (in C) Type Value (in hex) 

*(ip + 2) int 0x34FE2001 

sp + 3 short* 0x0E 

yp[-1] long 0x31F40370B9531483 

(*sp) + 1 short 0x8443 

&(ip[1]) int* 0x14 

 

b) (4 pts) What are the values (in hex) stored in each register shown after the following x86 

instructions are executed? Remember to use the appropriate bit widths. 

 

 Register Value (in hex) 

 
%rax 0x0000 0000 0000 0002 

 
%rsi 0x0000 0000 0000 0010 

movw (,%rax,4), %bx %bx 0x8442 

movswq 4(,%rax,2), %rcx  %rcx 0xffffffffffff8442 

leaq (%rsi,%rax,8), %rdi %rdi 0x0000000000000020 

addl 4(%rax,%rax), %esi %esi 0x2D328452 

 

 


