
 1 of 11

CSE 351 Spring 2019– Final Exam (12 June 2019)

Please read through the entire examination first!

 You have 110 minutes for this exam. Don’t spend too much time on any one problem!

 The last page is a reference sheet. Feel free to detach it from the rest of the exam.

 The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile

phones).

There are 9 problems for a total of 90 points. The point value of each problem is indicated in the table

below. Write your answer neatly in the spaces provided.

Please do not ask or provide anything to anyone else in the class during the exam. Make sure to ask

clarification questions early so that both you and the others may benefit as much as possible from the

answers.

POINTS WILL BE DEDUCTED if you are writing/erasing after the final bell has rung!

Good Luck!

Your Name:____Sample Solution________

UWNet ID:__________________________

Problem Topic Max Score

1 Caches 15

2 Processes 10

3 Virtual Memory 12

4 Memory Allocation 11

5 Java 9

6 Compilation & Structs 8

7 Representation 10

8 Pointers & Memory 9

9 Buffer Overflow 6

TOTAL 90

 2 of 11

1. Caches (15 points total)

You are using a byte-addressed machine with 64 KiB of Physical address space. You have a 2-way

associative L1 data cache of total size 256 bytes with a cache block size of 16 bytes. It uses LRU

replacement and write-allocate and write-back policies.

a) [2 pt] Give the number of bits needed for each of these:

Cache Block Offset: ____4_____ Cache Tag: ____9_________

b) [1 pt] How many sets will the cache have? ___8_______

c) [4 pts] Assume i and j are stored in registers, and that the array x starts at address 0x0. Give the

miss rate (as a fraction or a %) for the following two loops, assuming that the cache starts out empty.

#define LEAP 2

#define SIZE 128

int x[SIZE];

... // Assume x has been initialized to contain values.

... // Assume the cache starts empty at this point.

for (int i = 0; i < SIZE; i += LEAP) { // Loop 1

 x[i] = x[i] + i * i;

}

for (int j = 1; j < SIZE; j += LEAP) { // Loop 2

 x[j] = x[j] + j * 2;

}

Miss Rate for Loop 1: ___25%_______ Miss Rate for Loop 2: ___25% ________

d) [8 pts] For each of the changes proposed below, indicate how it would affect the miss rate of each

loop above in part c) assuming that all other factors remained the same as they were in the original

problem. Circle one of: “increase”, “no change”, or “decrease” for each loop.

Change associativity from Loop 1: increase / no change / decrease

2-way to direct mapped: Loop 2: increase / no change / decrease

Change LEAP from Loop 1: increase / no change / decrease

2 to 4: Loop 2: increase / no change / decrease

Change cache size from Loop 1: increase / no change / decrease

256 bytes to 512 bytes: Loop 2: increase / no change / decrease

Change block size from Loop 1: increase / no change / decrease

16 bytes to 32 bytes: Loop 2: increase / no change / decrease

 3 of 11

2. Processes (10 points total)
The following function prints out numbers.

void sunny(void) {

 int x = 4;

 if (fork()) {

 x += 6;

 } else {

 x += 1;

 }

 printf("%d ", x);

 if (fork()) {

 x += 1;

 } else {

 x -= 2;

 }

 printf("%d ", x);

 fork();

 exit(0);

}

a. [3 pts] List 3 possible outputs of the code above:

(1) __10 5 8 11 6 3_________________________________

(2) __10 5 11 8 6 3_________________________________

(3) __5 3 6 10 11 8_________________________________

b. [2 pts] What is the total number of processes created (including the original process that called

sunny) by this function?

8

c. [1 pt] Is it possible for the numbers to appear in descending order (highest value to lowest

value) in the output?

YES / NO

d. [2 pts] The function call fork()returns something. Describe, in general, what

fork()returns?

fork() returns 0 to the child process, and the PID of the child to the parent process

e. [2 pts] When context-switching from a process A to a process B, which elements of process B's

state must be restored before process B can begin executing:

 Contents of registers YES / NO

 Contents of L1 cache YES / NO

 Contents of PTBR YES / NO

 Contents of TLB YES / NO

Several answers are possible here. In

each valid output 10 must always come

before 8 and 11, AND 5 must always

come before 6 and 3. If you actually

run this code you may get confusing

results unless you insert a call to

fflush() after each printf.

 4 of 11

3. Virtual Memory (12 points)

Assume we have a virtual memory detailed as follows:

 8 KiB Virtual Address Space,

 2 KiB Physical Address Space,

 a TLB with 16 entries that is 4-way set associative with LRU replacement

 64 B page size

a) [5 pts] How many bits will be used for:

 Page offset? ___6________

Virtual Page Number (VPN)? __7_______ Physical Page Number (PPN)? ___5______

TLB index? ____2_____________ TLB tag? _______5___________

b) [1 pt] How many TOTAL entries are in this page table?

 (It is fine to leave your answer as powers of 2).

____27 or 128___________

 5 of 11

3. (cont.) The current contents of the TLB and (partial) Page Table are shown below:

TLB

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 - 0 07 00 1 06 - 0 1F 03 1

1 00 0B 1 0A - 0 0C 03 1 01 0F 1

2 07 - 0 0C 02 1 0F 01 1 0B - 0

3 01 1C 1 0C 01 1 04 01 0 1A 01 1

Page Table (only first 16 of the PTEs are shown)

VPN PPN Valid VPN PPN Valid VPN PPN Valid VPN PPN Valid

00 03 1 04 - 0 08 07 1 0C 0F 1

01 0B 1 05 0F 1 09 - 0 0D - 0

02 03 1 06 - 0 0A 01 1 0E 06 1

03 03 1 07 1C 1 0B 08 1 0F 0A 1

c) [6 pts] Determine the physical address, TLB miss or hit, and whether there is a page fault for the

following virtual address accesses (write “Y” or “N” for yes or no, respectively, in the TLB Miss?

And Page Fault? columns). If you can’t determine the PPN and/or physical address and/or TLB

miss and/or Page Fault, simply write ND (for non-determinable) in the appropriate entry in the

table.

Virtual Address
VPN

(give bits)

TLBT
(give
bits)

TLBI
(give
bits)

PPN
(give
bits)

Physical Address
(give bits)

TLB
Miss?

Page
Fault?

0x1306 1001100 10011 00 ND ND Y ND

0x0C62 0110001 01100 01 00011 00011 100010 N N

0x02C3 0001011 00010 11 01000 01000 000011 Y N

 6 of 11

4. Memory Allocation (11 points total)

1 #include <stdlib.h>

2 float pi = 3.14;

3

4 int main(int argc, char *argv[]) {

5 int year = 2019;

6 int* happy = malloc(sizeof(int*));

7 happy++;

8 free(happy);

9 return 0;

10 }

a) [3 pts] Consider the C code shown above. Assume that the malloc call succeeds and happy

and year are stored in memory (not in a register). Fill in the following blanks with “<” or “>”

or “UNKNOWN” to compare the values returned by the following expressions just before

return 0.

 &year ___>_____ &main

 happy ___<_____ &happy

&pi ___<______ happy

b) [4 pts] The code above has two memory-related errors. Use the line numbers in the code to

describe what the errors are and where they occur.

Error #1: On line 6 we are requesting more memory than we need. We should be requesting

size of int (4 bytes), not size of int* (8 bytes). Alternatively we could have meant to declare

happy to be of type int** (a pointer to a pointer to an int) so that we would have needed 8

bytes to hold a pointer to an int.

Error #2: On line 8 we are calling free on a pointer that was not the one returned to us by

malloc. In line 7 we are incrementing happy (a pointer to an int that was returned to us by

malloc).

c) [2 pts] (Not related to code at top of page) Give one advantage that next fit placement policy has

over a first fit placement policy in an implicit free list implementation.

Next fit searches the list starting where the previous search finished. This should often be

faster than first fit because it avoids re-scanning unhelpful blocks. First fit always starts

searching at the beginning of the list. In an implicit free list this is particularly bad because

the “free” list actually contains all allocated blocks as well as free blocks. So starting from the

beginning of the list is likely to traverse many allocated blocks each time.

d) [2 pts] List two reasons why it would be hard to write a garbage collector for the C

programming language.

Reason #1: Pointers in C can point to a location other than the beginning of a block of

memory on the heap.

Reason #2: In C you can “hide” pointers e.g. by casting them to longs.

 7 of 11

5. Java (9 points)

a) Given our discussion in class, circle whether you would expect the following to be True or False:

i. TRUE / FALSE: An instance of the Car class will be the same size as an instance of the Boat

class.

ii. TRUE / FALSE: An instance of the ElectricCar class will be the same size as an instance of

the Boat class.

iii. TRUE / FALSE: The vtable for a Car will be the same size as the vtable for a Boat.

iv. TRUE / FALSE: The vtable for a ElectricCar will be the same size as the vtable for a Car.

v. TRUE / FALSE: Each instance of a class will have a separate copy of the vtable for that class.

vi. TRUE / FALSE: Each instance of the ElectricCar class will initially contain the value 0 for

rangeInMiles until setRange() is called

b) More Java….

vii. TRUE / FALSE: The Java Virtual Machine converts Java instructions into bytecodes.

viii. TRUE / FALSE: The Java compiler can always detect if an array reference is out of bounds at

compile time.

ix. TRUE / FALSE: The programmer determines if Java objects are allocated on the stack or the heap.

class Vehicle {

 int passengers;

 public void makeNoise() {

 System.out.println("Vroom");

 }

}

class Boat extends Vehicle {

 int propellers;

 public void makeNoise() {

 System.out.println("toot");

 }

}

class Car extends Vehicle {

 int wheels;

}

class ElectricCar extends Car {

 int rangeInMiles;

 public void makeNoise() {

 System.out.println("silent");

 }

 public void setRange(int rg) {

 rangeInMiles = rg;

 }

}

 8 of 11

6. Compilation and Structs (8 points)

a) [2 pts] Assume that we compile a C source file into an object file. Which part of the object file

keeps track of the symbols and labels needed later by the code in that file?

Relocation table

b) [2 pts] The tool used to combine one or more .o files into an executable is called the:

_____________ (Hint: the answer is not “gcc”, we want the name of tool that does this

particular step.)

Linker

c) [4 pts] For this question, assume a 64 bit machine and the following C struct definition.

typedef struct {

 short year;

 char *title;

 char artist[16];

 float rating;

} song;

 [1 pt] What does sizeof(song) return?______40____________________

 [1 pt] Is there any internal fragmentation? If so, how many bytes and where?

Yes, 6 bytes between year and title

 [1 pt] Is there any external fragmentation? If so, how many bytes and where?

Yes, 4 bytes at the end after rating

 [1 pt] Is there an ordering of the fields that reduces the amount of fragmentation in the struct? If

yes, provide the order. If not, explain why not.

Yes. The order: title, rating, year, artist will result in 32 bytes total and no

internal fragmentation, just two bytes of external fragmentation at the end. Other orders

also get to this size.

 9 of 11

7. Representation (10 points)

a) [4 pts] Consider the signed char x = 0b 1000 0110

i. What is the value of x? You may answer as the sum of powers of 2.

ii. Evaluate each of the following expressions:

x & (x >> 4) ~x x ^ 0xC2

(arithmetic shift,

since x is signed)

0b 1000 0000 __ 0b 0111 1001__ 0b 0100 0100__

b) [3 pts] What 32-bit bit pattern would be used in IEEE 754 floating point to represent the decimal

value -1 (e.g. in a C float)?

__1____ ___01111111______ ____00000000000000000000000_________

S (1 bit) E (8 bits) M (23 bits)

c) [3 pts] On a 64-bit word machine, you are given the following array declaration in C:
 double x[8][2]

If x starts at address 0, what will the expression &(x[2][4]) evaluate to? If “unknown” or “cannot

be guaranteed”, state that. Otherwise give your answer as a single number in decimal.

0 + 2 * 2 * 8 + 4 * 8 = 32 + 32 = 64

-27 + 22 + 21 = -122

 10 of 11

8. Pointers & Memory (9 points)

We are using a 64-bit x86-64 machine (little endian). Below is the husky function disassembly,

showing where the code is stored in memory. Hint: read the questions before reading the assembly!

0000000000400507 <husky>:

 400507: 48 83 fe 02 cmp $0x2,%rsi

 40050b: 7f 05 jg 400512 <husky+0xb>

 40050d: 48 8d 04 7f lea (%rdi,%rdi,2),%rax

 400511: c3 retq

 400512: 48 83 ec 08 sub $0x8,%rsp

 400516: 48 83 ee 01 sub $0x1,%rsi

 40051a: e8 e8 ff ff ff callq 400507 <husky>

 40051f: 48 83 c4 08 add $0x8,%rsp

 400523: c3 retq

a) [4 pts] What are the values (in hex) stored in each register shown after the following x86

instructions are executed? Remember to use the appropriate bit widths.

 Register Value (in hex)

%rax 0x0000 0000 0040 050d

%rsi 0x0000 0000 0000 0010

movswl 4(%rsi,%rax), %ecx %rcx 0x0000 0000 0000 08c4

leaw (%rsi,%rsi,2), %di %di 0x0030

b) [4 pts] Complete the C code below to fulfill the behaviors described in the inline comments using

pointer arithmetic. Let short* shortP = 0x400514

short v1 = shortP[__-3____]; // set v1 = 0x048d

long* v2 = (long*) ((__int_____*)shortP + 3); // set v2 = 0x400520

c) [1 pt] husky is a recursive function. What address is put on the stack when husky calls itself.

Give the exact address:

0x40051f

 11 of 11

9. Buffer Overflow (6 points)

The following piece of C code is vulnerable to buffer overflow:

void foo() {

 char buf[8];

 gets(buf);

 printf("You typed %s!\n", buf);

}

int main() {

 foo();

 return 0;

}

a) [2 pts] What line of this C code is vulnerable, and why?

The call to gets(buf) in foo is vulnerable because gets doesn’t check array bounds and

can overwrite the return address.

The x86-64 assembly below corresponds to the C code above:

.LC0:

 .string "You typed %s!\n"

foo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 movq %rsp, %rsi

 movl $.LC0, %edi

 movl $0, %eax

 call printf

 addq $24, %rsp

 ret

main:

 subq $8, %rsp

 call foo()

 movl $0, %eax

 addq $8, %rsp

 ret

b) [2 pts] How many bytes do you need to enter to overwrite the return address to main with a stack

address?

30 bytes. 24 bytes to fill buf, and 6 more bytes to overwrite the lower 6 bytes of the

original return address. Stack addresses start with 0x00007fff... and the original

return address will be low down in memory, so no need to overwrite the most significant

bytes (and x86 is little-endian, so the most significant bytes are at the highest addresses).

c) [2 pts] Suppose you know that there is a function at memory address 0x40806c that you want to

execute. What bytes can you give as input such that the vulnerable program will call your function?

(Note: we are looking for bytes, not ASCII characters). If you need to enter the same byte multiple

times, you may write “<byte> * <number of times>”

ff6c80400000000000

or <ff>*<24> 6c80400000000000

(the leading 24 bytes of ‘f’ can be any character)

