
 
 

University of Washington – Computer Science & Engineering 
Autumn 2019 Instructor:  Justin Hsia 2019-10-28 

Last Name: Perfect 

First Name: Perry 

Student ID Number: 1234567 

Name of person to your Left | Right Samantha Student Samantha Student 
All work is my own.  I had no prior knowledge of the exam 

contents nor will I share the contents with others in 
CSE351 who haven’t taken it yet.  Violation of these terms 

could result in a failing grade.  (please sign) 

 

Do not turn the page until 5:30. 
Instructions 

• This exam contains 5 pages, including this cover page.  Show scratch work for partial 
credit, but put your final answers in the boxes and blanks provided. 

• The last page is a reference sheet.  Please detach it from the rest of the exam. 
• The exam is closed book (no laptops, tablets, wearable devices, or calculators).  You are 

allowed one page (US letter, double-sided) of handwritten notes. 
• Please silence and put away all cell phones and other mobile or noise-making devices.  

Remove all hats, headphones, and watches. 
• You have 70 minutes to complete this exam. 

 
Advice 

• Read questions carefully before starting.  Skip questions that are taking a long time. 
• Read all questions first and start where you feel the most confident. 
• Relax.  You are here to learn. 

 

Question 1 2 3 4 5 Total 

Possible Points 20 20 12 24 24 100 
  



2 
 

Question 1:  Number Representation  [20 pts] 

(A) Convert the decimal number -12 into 5-bit two’s complement.  Answer in binary.  [2 pt] 

MSB has weight –24 = –16.  –12 = –16 + 4. 0b 10100 

(B) If signed char a = 0x88, complete the bitwise C statement so that b = 0xF1.  The 
first blank should be an operator and the second blank should be a numeral.  [4 pt] 

  0b 1000 1000 
^ 0b 0111 1001    OR    0b 1000 1000 >> 3 

b = a ^  0x79 
b = a >> 0x3 

     0b 1111 0001       (arithmetic right shift) 

(C) Find the largest 8-bit unsigned numeral c (answer in hex) such that c + 0x80 causes 
NEITHER signed nor unsigned overflow in 8 bits.  [4 pt] 
Unsigned overflow will occur for c > 0x80. 
Signed overflow can only happen if c is negative (also > 0x80). 0x 7F 

 
For the rest of this problem we are working with a floating point representation that follows the 
same conventions as IEEE 754 except using 8 bits split into the following fields: 

Sign (1) Exponent (5) Mantissa (2) 

(D) What is the magnitude of the bias of this new representation?  [2 pt] 

25-1-1 = 15 

(E) What is the decimal value encoded by 0b 1100 1001 in this representation?  [4 pt] 

S = 1, E = 0b10010 = 18, M = 0b01 -10 

 Value = ሺ−1ሻଵ × 1.01ଶ × 2ଵ଼ିଵହ = −1.01ଶ × 2ଷ = −1010ଶ = −10 
 

(F) What is the smallest positive integer that can’t be represented in this floating point 
encoding scheme?  Hint: for what integer will the “one’s digit” get rounded?  [4 pt] 

9 

Look for the number such that the first bit off the right end of the mantissa has the value 
20 = 1.  In this case, that means 1.0012 × 2Exp, with the underlined bit being 20.  The 
underlined bit has the value 2-3 × 2Exp = 2Exp-3 = 20, meaning Exp = 3 and 1.0012 × 23 = 
10012 = 9. 
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Question 2:  Pointers & Memory  [20 pts] 

For this problem we are using a 64-bit x86-64 machine (little endian).  The current state of 
memory (values in hex) is shown below: 

char*  charP  = 0xD; 
short* shortP = 0x1E; 

Word 
Addr +0 +1 +2 +3 +4 +5 +6 +7 

0x00 20 F6 EF EA A2 5E 9F 1A 

0x08 A2 D0 4F C4 A0 0C F7 27 

0x10 B8 BD 1A CA 35 95 CB 80 

0x18 84 3F 02 4F 8E F3 F6 E5 

0x20 CD 4A F6 48 1A 6F 7E 63 

(A) Using the values shown above, fill in the C type and hex value for each of the following C 
expressions.  Leading zeros are not required for the hex values.  [8 pt] 

C Expression C Type Hex Value 

*(charP + 6) char 0x CA 

(int**)shortP - 2 int** 0x E 

charP: 0xD + 6 (scaled by sizeof(char) = 1) yields 0x13.  Address 0x13 holds the 
char 0xCA. 

shortP: 0x1E – 2 (scaled by sizeof(int*) = 8) yields 0xE. 

(B) What are the values (in hex) stored in each register shown after the following x86-64 
instructions are executed?  We are still using the state of memory shown above.  
Remember to use the appropriate data widths.  [12 pt] 

 Register Data (hex) 

 %rdi 0x 0000 0000 0000 0004 

 %rsi 0x 0000 0000 0000 0001 

leal   2(,%rsi,8),    %r10d %r10d 0x 0000 000A 

movswq (%rdi,%rdi,2), %r11 %r11 0x 0000 0000 0000 0CA0 

cmpb   0x19(%rsi),    %dil %dil 0x 04 

leal calculates address 2 + 0x1 × 8 = 10 = 0xA in 4 bytes. 

movswq instruction pulls two bytes starting at memory address 0x4 + 0x4 × 2 = 0xC, 
which is 0x0CA0 (remember little endian!).  Then sign-extend (copies MSB of 0) 
out to 8 bytes. 

cmp doesn’t store its result, so there’s no change to %dil (lowest byte of %rdi)!  
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Question 3:  Design Questions  [12 pts] 

Answer the following questions in the boxes provided with a single sentence fragment.  
Please try to write as legibly as possible. 
 
(A) While the floating point special cases seem arbitrary, there is a method to the madness.  

Briefly describe why the following choices were made:  [4 pt] 

The E encoding for ∞:  Some possible answers: 
• Largest E to be larger than normalized numbers in comparisons. 
• One higher than largest normalized E so that overflow naturally results in ∞. 

Multiple encodings for NaN:  Some possible answers: 
• To parallel the fact that there are multiple ways to generate a NaN. 
• To help with debugging the cause of the NaN. 

 
(B) When we cast between an integer data type and a floating point one, the conversion is 

done by encoding the original value, changing the stored bits.  Imagine if we instead did 
the conversion by leaving the bits the same, but interpreting them differently.  Name an 
advantage and a disadvantage of this change.  [4 pt] 

Advantage:  Some possible answers: 

• No loss of data if we cast from between integer and floating point 
representations and then back again. 

• The hardware conversion between integer and floating point becomes 
faster/easier/simpler. 

 

Disadvantage:  Some possible answers: 

• No well-defined relationship between the converted values. 
• Breaks compatibility with code that relies on the preservation of the value. 

 
(C) Assume we have an address space of 2w bytes.  If we decided to assign an address to 

every 4 bits instead of every byte, what is the new width of an address?  Also, name one 
change we would need to make to the existing x86-64 instruction syntax.  [4 pt] 

New address width:  w+1 bits 
 

 

Instruction syntax change:  Some possible answers: 

• Introduce a new instruction suffix/width specifier for 4 bits. 
• Allow a scale factor of 16 for memory operands. 
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Question 4:  C & Assembly  [24 pts] 

Answer the questions below about the following x86-64 assembly function: 

 
(A) What variable type would %rdi be in the corresponding C program?  [4 pt] 

Line 5: we read a byte out of memory by dereferencing the value in 
%rdi.  unsigned char * also accepted due to zero-extension. 

____char *____ 

(B) What variable type would the 3rd argument be in the corresponding C program?  [4 pt] 

Line 8: %dl (lowest byte of %rdx) is compared to the byte read 
out of memory. 

_____char_____ 

(C) This function uses a while loop.  Fill in the two conditionals below, using register names 
as variable names (no declarations necessary).  [8 pt] 

al                      . 
al != 0                    . 

*rdi          al != dl   . 
while ( _*rdi != 0__ && _*rdi != dl_ ) 

Conditional 1 is from Lines 6-7, which exit the loop if %al = 0. 
Conditional 2 is from Lines 8-9, which loop back if %al – %dl != 0. 

(D) Taking the variable types into account, describe at a high level what the purpose of Line 
10 is (not just what it does mechanically).  [4 pt] 

Adds a null terminator (char with value 0) to the end of *rsi (the destination string). 

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [4 pt] 

It copies all of the characters from a source string (in %rdi) to a destination string (in 
%rsi) until it sees a specified character (in %dl) or the end of the source string.  The 
destination string is then null-terminated. 

mystery: 

        jmp     .L2                  # Line 1 

.L4:    addq    $1, %rdi             # Line 2 

        movb    %al, (%rsi)          # Line 3 

        leaq    1(%rsi), %rsi        # Line 4 

.L2:    movzbl  (%rdi), %eax         # Line 5 

        testb   %al, %al             # Line 6 

        je      .L3                  # Line 7 

        cmpb    %dl, %al             # Line 8 

        jne     .L4                  # Line 9 

.L3:    movb    $0, (%rsi)           # Line 10 

        retq                         # Line 11 
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Question 5:  Procedures & The Stack  [24 pts] 

The recursive function pcount_r() from lecture calculates the “popcount” of x, returning the 
number of 1’s in the unsigned binary representation.  However, a faulty compiler has produced 
the BUGGY x86-64 disassembly shown below: 

 

 
(A) What is the address of the code that comes after the function pcount_r (not the label) in 

memory?  [2 pt] 

The last instruction in pcount_r is retq, which is at address 0x 4005f2 

0x4005f1 and is only 1 byte long. 

(B) Circle one:  The variable x will show up in which table(s) in the object file?  [2 pt] 

Symbol Table Relocation Table Both Tables Neither Table 

x is a local variable and doesn’t have an associated label, so it won’t be in either table. 

(C) What is the return address to pcount_r stored on the stack?  Answer in hex.  [2 pt] 

The address of the instruction after call. 0x 4005eb 

(D) To see what’s going wrong with this implementation, trace the execution for 
pcount_r(1).  What are the expected and actual return values?  [4 pt] 

There is one 1 in 1.  %rdi and %rax 
are both 0 after the recursive call. 

Expected: 1 Actual
: 

0 

long pcount_r(unsigned long x) { 
    if (x == 0) 
        return 0; 
    return (x & 1) + pcount_r(x >> 1); 
} 

00000000004005d7 <pcount_r>: 

  4005d7:  b8 00 00 00 00  movl   $0x0,%eax 

  4005dc:  48 85 ff        testq  %rdi,%rdi 

  4005df:  75 02           jne    4005e3 <pcount_r+0xc> 

  4005e1:  f3 c3           repz retq 

  4005e3:  48 d1 ef        shrq   $1, %rdi 

  4005e6:  e8 ec ff ff ff  callq  4005d7 <pcount_r> 

  4005eb:  83 e7 01        andl   $0x1,%edi 

  4005ee:  48 01 f8        addq   %rdi,%rax 

  4005f1:  c3              retq 
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(E) Assume main calls our buggy pcount_r(5).  Fill in the snapshot of memory below the 
top of the stack in hex as this call to pcount_r returns to main.  For unknown words, 
write “0x unknown”.  [4 pt] 

0x7fffffffdc98 <ret addr to main> pcount_r(5) 

0x7fffffffdc90 0x 4005eb pcount_r(2) 

0x7fffffffdc88 0x 4005eb pcount_r(1) 

0x7fffffffdc80 0x 4005eb pcount_r(0) 

0x7fffffffdc78 0x unknown   

0x7fffffffdc70 0x unknown  

All minimal stack frames, including the base case. 

(F) Now let’s go about fixing the assembly code.  During your execution trace in part D, think 
about when you encountered a value that you didn’t expect.  Which register did this 
happen to?  As a C expression, what value was supposed to be held in this register?  Is 
this caller- or callee-saved?  [4 pt] 

Register: %rdi Expression: x Type: caller-saved 

In part D, at 0x4005eb we expected %edi = 1 (old value of x), but it was actually 0. 

(G) Now we need to add a pushq and popq instruction for the register you identified above.  
Pay attention to the register saving convention you identified above.  Give the addresses 
of the instruction you would place the new instruction just before.  For example, write “0x 
4005e1” if you wanted to place an instruction just before the repz retq.  [6 pt] 

pushq address: 0x 4005e3 

  

popq address: 0x 4005eb 

Because %rdi is caller-saved, the saving and restoring should happen around the recursive 
call.  The push has to happen before call and before we modify x/%rdi.  The pop has 
to happen after call but before we use %edi. 

 

End of Exam 
Did you write your Student ID Number on the top-right corner of every odd page? 

 


