

University of Washington – Computer Science & Engineering

Autumn 2019 Instructor: Justin Hsia 2019-12-10

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Stephanie Student LeBron Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 12:30.
Instructions

• This exam contains 14 pages, including this cover page. Show scratch work for partial credit,
but put your final answers in the boxes and blanks provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.
• The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed

two pages (US letter, double-sided) of handwritten notes.
• Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.
• You have 110 minutes to complete this exam.

Advice

• Read questions carefully before starting. Skip questions that are taking a long time.
• Read all questions first and start where you feel the most confident.
• Relax. You are here to learn.

Question M1 M2 M3 M4 M5 F6 F7 F8 F9 F10 Total

Possible Points 16 4 16 23 12 10 19 18 14 18 150

2

Question M1: Numbers [16 pts]

(A) Take the 32-bit numeral (i.e. bit pattern) 0xFF800000. Circle the number representation below
that has the smallest magnitude (i.e. closest to 0) for this numeral. [4 pt]

Floating Point Two’s Complement Unsigned
Two’s AND
Unsigned

float: S = 1, E = 0b1111 1111, M = 0, so −∞.
unsigned int: value is 231 + 230 + … + 223 = 231 + x.
int: value is –231 + 230 + … + 223 = –231 + x, which is smaller in magnitude.

(B) What value will be read after we try to store 2-120 – 2-200 in a float? (Circle one) [4 pt]

2-120 NaN 0 2-120–2-200

2-120 is a representable exponent with E = –120+bias = 0x07. 2-200 is 80 exponents smaller, so
way off the end of the mantissa, so subtracting has a negligible effect that gets rounded off.

(C) Complete the following C function that returns the signed value of the exponent (not the E field)
of a 32-bit floating point numeral (as an unsigned int argument as in Lab 1b). Ignore floating
point special cases for this question. [4 pt]

int getExp(unsigned int fp) {
 return ((fp >> 23) & 0xFF) - 127; // could mask before shifting
} // return value gets implicitly cast to int

(D) Dubs claims that the expression (x != (float) x) will return True/1 if there was data loss
during the cast of int x. Do you agree? Briefly explain why or why not. [4 pt]

Works? (circle one): Yes No

Explanation: During the comparison, x will get implicitly cast to float, so this
expression will always return False/0.

Question M2: Design Question [4 pts]

(A) Assume we decided to store/encode object files as text files instead of binary files. Name one
advantage and one disadvantage of this design decision. [4 pt]

Advantage: Some possible answers:
• Easier to read and interpret by humans
• Can be read by a human in a text editor (i.e. don’t need to use objdump)

Disadvantage: Some possible answers:
• Consumes more space/memory because each hex digit of binary data now takes up 1

(ASCII) or 2 (Unicode) bytes
• More complicated process now needed by Linker (has to convert from text to binary)

to build an executable

SID: __1234567__

3

Question M3: Pointers & Memory [16 pts]

Assume a 64-bit x86-64 machine (little endian). Below is the buggy pcount_r function disassembly
from the midterm, showing where the code is stored in memory. Hint: read the questions before the
assembly!

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are
executed? Use the appropriate bit widths. [8 pt]

 Register Value (hex)

 %rdi 0x 0000 0000 0040 05e0

 %rsi 0x 0000 0000 0000 0007

leaq (%rdi,%rsi,2), %rax %rax 0x 0000 0000 0040 05ee

addb 2(%rdi), %sil %sil 0x ca

leaq instruction calculates the address 0x4005e0 + 2*7 = 0x4005ee.

addb instruction pulls the byte at memory address 0x4005e0+2 = 0x4005e2, which is 0xc3.
adding this with the lowest byte of %rsi yields 0xc3 & 0x07 = 0xca.

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer
arithmetic. Let short* shortP = 0x4005e2. [8 pt]

The difference between v1 and shortP is 0x10 = 16 bytes. Since by pointer arithmetic we are
moving 4 “things” away, shortP must be cast to a pointer to a data type of size 4 bytes.

As two bytes (short), -1 = 0xFFFF, which is found at addresses 0x4005e8 and 0x4005e9.
0x4005e8 is 6 bytes = 3 shorts ahead of shortP.

00000000004005d7 <pcount_r>:

 4005d7: b8 00 00 00 00 movl $0x0,%eax

 4005dc: 48 85 ff testq %rdi,%rdi

 4005df: 75 02 jne 4005e3 <pcount_r+0xc>

 4005e1: f3 c3 repz retq

 4005e3: 48 d1 ef shrq $1, %rdi

 4005e6: e8 ec ff ff ff callq 4005d7 <pcount_r>

 4005eb: 83 e7 01 andl $0x1,%edi

 4005ee: 48 01 f8 addq %rdi,%rax

 4005f1: c3 retq

long* v1 = (long*)((_int/float_*)shortP + 4); // set v1 = 0x4005f2

short v2 = shortP[__3__]; // set v2 = -1

4

Question M4: Procedures & The Stack [23 pts]

A Caesar cipher takes a string and shifts each character by the same amount (i.e. *str += shift;
while *str != '\0'). For example, "justin" shifted by 2 becomes "lwuvkp". Below is the
disassembly for an inefficient recursive implementation caesar that returns the length of the string:

(A) Which of the following generates the labels used in the disassembly above? Circle one. [2 pt]

Compiler Assembler Linker Loader

(B) What is the return address to caesar that gets stored on the stack during a recursive call?
Answer in hex. [2 pt]

The address of the instruction after the callq. 0x 400567

(C) Of the 16 instructions shown in the disassembly, how many of them access memory? [4 pt]

movzbl, mov (0x400555), retq (x2), pop (x2) READ from memory: _6_ instructions

push (x2), mov (0x40055b), callq WRITE to memory: _4_ instructions

(D) Briefly explain the purpose of the push at 0x400554. [2 pt]

To save the old value of the callee-saved register %rbx, which we are about to change.

0000000000400547 <caesar>:

 400547: 0f b6 07 movzbl (%rdi),%eax # get *str

 40054a: 84 c0 test %al,%al

 40054c: 75 06 jne 400554 <caesar+0xd>

 40054e: b8 00 00 00 00 mov $0x0,%eax # base case

 400553: c3 retq # returns 0

 400554: 53 push %rbx

 400555: 8b 5c 24 10 mov 0x10(%rsp),%ebx # get shift

 400559: 01 d8 add %ebx,%eax

 40055b: 88 07 mov %al,(%rdi)

 40055d: 48 83 c7 01 add $0x1,%rdi # next char

 400561: 53 push %rbx

 400562: e8 e0 ff ff ff callq 400547 <caesar>

 400567: 83 c0 01 add $0x1,%eax # length += 1

 40056a: 5b pop %rbx

 40056b: 5b pop %rbx

 40056c: c3 retq

SID: __1234567__

5

(E) Briefly explain the purpose of the push at 0x400561. Hint: what value are we pushing and
where did we get it from? Read the comments! [2 pt]

Push %rbx, which currently holds the value of shift (the 7th argument), for the recursive
call to read.

(F) Assume main calls caesar on the string "cse" with a shift of 1. Fill in the stack snapshot
below (in hex) as this call returns to main. For unknown words, write “0x unknown”. [8 pt]

0x7fffffffdcc8 <ret addr to main>

caesar("cse",…,1) 0x7fffffffdcc0 <original rbx>

0x7fffffffdcb8 0x 1

0x7fffffffdcb0 0x 400567

caesar("se",…,1) 0x7fffffffdca8 0x 1

0x7fffffffdca0 0x 1

0x7fffffffdc98 0x 400567

caesar("e",…,1) 0x7fffffffdc90 0x 1

0x7fffffffdc88 0x 1

0x7fffffffdc80 0x 400567 caesar("",…,1)

4 total stack frames of caesar created as shown above, each moving one character forward in the
initial string. In the recursive case, first we push the old value in %rbx onto the stack before
pushing the new value of %rbx (the value of shift read from the previous stack frame). The
last stack frame hits the base condition and doesn’t push anything onto the stack.

(G) Name a way that we can reduce the memory usage of this function (either in amount of memory
or number of memory accesses) while maintaining correct behavior and keeping it recursive and
explain why the change helps. [3 pt]

Some acceptable responses:

• Pass shift in an unused argument register, which saves us from pushing it to the stack on
every recursive call.

• Read shift into a caller-saved register instead of %rbx, so we don’t need to push the old
value of the register at the beginning of every recursive call.

• Replace the first pop (0x40056a) with addq $8, %rsp, since we don’t need/use the
restored value of shift.

6

Question M5: C & Assembly [12 pts]

Answer the questions below about the following x86-64 assembly function, which uses a struct with two
fields named one and two, declared in that order:

(A) %rdi contains a pointer to an instance of the struct. What variable type is field one? [2 pt]

In Line 4, (%rdi) is used in a cmpb instruction. ____char____

(B) Based on Line 7, give a more intuitive name for the field two in the struct. [1 pt]

Other variants accepted. next or ptr

(C) This function fits into the following code skeleton. Fill in the corresponding parts below, using
register names as variable names (e.g. al for the value in %al). None should be blank.
Remember that the struct fields are named one and two. [9 pt]

int mystery(mysteryStruct* rdi, char sil) {

 for (eax = 0; rdi != 0; rdi = rdi->two) {

 if (rdi->one == sil) {

 return eax;

 }

 eax += 1; // can be switched with the Update statement

 }

 return -1;

}

Grading notes:
• rdi also accepted for loop Condition statement.
• *rdi in place of rdi->one in if-statement received partial credit.

mystery:

 movl $0, %eax # Line 1

.L2: testq %rdi, %rdi # Line 2

 je .L5 # Line 3

 cmpb %sil, (%rdi) # Line 4

 je .L1 # Line 5

 addl $1, %eax # Line 6

 movq 8(%rdi), %rdi # Line 7

 jmp .L2 # Line 8

.L5: movl $-1, %eax # Line 9

.L1: rep ret # Line 10

SID: __1234567__

7

Question F6: Structs [10 pts]

For this question, assume a 64-bit machine and the following C struct definition.

typedef struct { K:
 char* title; 8 // title (e.g. "HW SW INTERFACE")
 char dept[3]; 1 // dept (e.g. "CSE")
 short num; 2 // course number (e.g. 351)
 int enrolled; 4 // students enrolled
} course; Kmax = 8

(A) How much memory, in bytes, does an instance of course use? How many of those bytes are
internal fragmentation and external fragmentation? [6 pt]

sizeof(course) Internal External

24 bytes 3 bytes 4 bytes

Alignment requirements listed above in red next to the struct fields. A course instance:

title dept num enrolled
0 8 11 12 14 16 20 24

The unused bytes around num count as internal fragmentation, the unused bytes after enrolled
count as external fragmentation.

(B) Assume that an instance course c is allocated on the stack and an array char ar[] is
allocated 40 bytes below c (i.e. &ar + 0x28 == (char*)&c). Fill in the blanks below with
the new ASCII characters stored in c.dept after the following loop is executed. Hint: recall that
the values 0x30 to 0x39 correspond to the ASCII characters '0' to '9'. [4 pt]

for (int i = 0; i < 52; ++i) {

 ar[i] = i;

}

Starting from the beginning of ar, we store the values 0 to 39
before we reach the struct c. The values 40 to 47 overwrite the
bytes of c.title (address 0x2f2e2d2c2b2a2928, assuming
little-endian). c.dept then gets overwritten with the values 48
= 0x30 = '0', 49 = 0x31 = '1', and 50 = 0x32 = '2'.

c.dept[0]: '0'

c.dept[1]: '1'

c.dept[2]: '2'

8

Question F7: Caching [19 pts]

We have 256 KiB of RAM and a 4-KiB L1 data cache that is 2-way set associative with 32-byte blocks
and random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: [3 pt]

Tag bits Index bits Offset bits

7 6 5

18 address bits. logଶ 32 = 5 offset bits. 212-B cache = 128 blocks. 2 blocks/set → 64 = 26 sets.

(B) The code snippet below accesses two arrays of doubles. Assuming i is stored in a register and
the cache starts cold, give the memory access pattern (read or write to which elements/addresses)
and compute the miss rate. [6 pt]

#define SIZE 128
double src[SIZE]; // &src = 0x08000 (physical addr)
double dst[SIZE]; // &dst = 0x0E000 (physical addr)
for (int i = 0; i < SIZE; i += 1) {
 dst[i] = src[i];
 src[i] = i;
}

 Per Iteration:
(circle) →
(fill in) →

Access 1:
R / W to

src[i]

Access 2:
R / W to

dst[i]

Access 3:
R / W to

src[i]

src[i] and dst[i] map into the same set because their index fields
match. However, our cache is 2-way set associative, so they do not conflict.
Each block holds 32 B = 4 doubles, so for the 4 iterations in the same cache
block, we get MMH|HHH|HHH|HHH for a miss rate of 2/12 = 1/6.

Code Miss Rate:

__1/6__

(C) For each of the proposed (independent) changes, draw ↑ for “increased”, ― for “no change”, or
↓ for “decreased” to indicate the effect on the miss rate from Part B for the code above: [8 pt]

Use float instead __↓__ Double the cache size __―__

Half the associativity __↑__ No-write allocate __↑__

Using floats means we access each block twice as much (MR = 1/12). Doubling cache size
doubles the number of sets, but src[i] and dst[i] still map to the same set. Direct-mapped
would cause src[i] and dst[i] to generate conflict misses. No-write allocate means we don’t
bring in the block for dst into the cache on access 2, so future access 2s continue to be Misses.

(D) Assume it takes 160 ns to get a block of data from main memory. If our L1 data cache has a hit
time of 5 ns and a miss rate of 5%, what is our average memory access time (AMAT)? [2 pt]

AMAT = HT + MR×MP = 5 ns + 0.05 × 160 ns = 5 + 8 ns 13 ns

SID: __1234567__

9

Question F8: Processes [18 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible
outcomes: [6 pt]

The 7 possible outcomes:
 1) 5, 5, 6, 7,

 2) 5, 5, 7, 6,

 3) 5, 6, 5, 7,

 4) 5, 6, 7, 5,

 5) 6, 5, 5, 7,

 6) 6, 5, 7, 5,

 7) 6, 7, 5, 5,

(B) For the following examples of exception causes, write “S” for synchronous or “A” for asynchronous
from the perspective of the user process. [4 pt]

System call __S__ Divide by zero __S__

Segmentation fault __S__ Key pressed __A__

Everything but a key press is caused by an assembly instruction within your program.

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the
following would be different when context switching to a different process? [4 pt]

Process ID __A__ Program __S__ PTBR __A__ Condition
Codes

__S__

Every process has a unique ID and its own page table, but could be running different instances of
the same program. Each process has its own execution state (including the condition codes), but
it is possible that the condition codes have the same values at the instance we switch.

(D) Is the following statement True or False? Provide a brief justification: a single process can
execute multiple programs simultaneously. [4 pt]

Circle one: True / False
Justification: One process is dedicated to running one program at a time. The program
defines the instructions, initial memory state, etc. of the process, so two programs can’t exist
within the same process at once.

n=5

fork

print

print print
Process
Diagram:

n=6
wait

n=7 print

void concurrent(void) {
 int n = 5;
 if (fork()) {
 n++;
 if (fork()) {
 n++;
 wait();
 }
 printf("%d, ", n);
 exit(0);
 } else {
 printf("%d, ", n);
 }
 printf("%d, ", n);
 exit(0);
}

10

Question F9: Virtual Memory [14 pts]

Our system has the following setup:
• 15-bit virtual addresses and 2 KiB of RAM with 256-byte pages
• A 4-entry fully-associative TLB with LRU replacement
• A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

(A) Compute the following values: [8 pt]

page offset width 8 bits # of TLB sets 1 set

of virtual pages 27 pages minimum width of PTBR 11 bits

Page offset is logଶ 256 = 8 bits wide. # of virtual pages is 2n-p = 27. The TLB is fully-
associative, so only has 1 set. The page table lives in physical memory, so the PTBR must hold
its physical address, which need to be at least 11 bits wide to address all 2 KiB of RAM.

(B) Assuming that the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed), give
example addresses that will fulfill the following scenarios: [6 pt]

Find the desired entry in the TLB. Because the
TLB is fully-associative, the TLB tag is exactly the
virtual page number (VPN). Any page offset
within this page will access that TLB entry.

A value in %rip that causes a TLB Hit and no exception:
Want TLB entry with V=1, X=1 → VPN 0x04.

0x0400-0x04FF

A write address that causes a TLB Hit and segmentation fault:
Want TLB entry with V=1, W=0 → VPN 0x20.

0x2000-0x20FF

Grading notes:
• Answers without leading zeros accepted.

TLBT PPN Valid D R W X
0x20 0xc 1 0 1 0 0

0x7f 0xa 1 0 1 1 0

0x7e 0xf 1 0 1 1 0

0x04 0xe 1 0 1 1 1

SID: __1234567__

11

Question F10: Memory Allocation [18 pts]

(A) In the following code, briefly identify the TWO memory issues and their fixes. [6 pt]

int N = 32;

long* func(long src[]) {
 long* p = (long*) malloc(N * sizeof(long));
 for (int i = 0; i < N; i++) {
 p[i] += src[i];
 }
}

Error 1: Using uninitialized memory in p[i].

Fix 1: Replace malloc with calloc or Change p[i] += src[i]; to p[i] = src[i];

Error 2: Memory leak – no way to access malloc’ed memory once func returns.

Fix 2: Add return p; at end of func.

(B) We are using a dynamic memory allocator on a 64-bit machine with an explicit free list,
16-byte boundary tags, and 8-byte alignment. Assume that a footer is always used. [6 pt]

Request block addr return value block size

internal
fragmentation
in this block

p = malloc(9); 0x628 0x_638_ __48__ bytes __39__ bytes

Payload (returned addr) starts a header size after the block. Need at least 32 B for boundary tags
and 9 B for payload = 41 B; padding for 8-B alignment gets us to 48 B (also the minimum block
size in this explicit free list). Internal fragmentation is block size – payload = 48 – 9 = 39 B.

(C) Consider the C code shown here. Assume that the malloc
call succeeds and that all variables are stored in memory
(not registers). In the following groups of expressions,
circle the one whose returned value (assume just before
return 0) is largest. [6 pt]

 Group 1: &sp sp &str

 Group 2: &glob main str

 Group 3: glob ONE *str

#include <stdlib.h>
long glob = 10;
char* str = "351";

int main() {
 short* sp = malloc(8);
 int ONE = 1;
 free(sp);
 return 0;
}

8) &sp/&ONE (Stack)
7) sp (Heap)
6) &glob/&str (Static Data)
5) str (Literals)
4) main (Code)
3) *str ('3' = 0x33)
2) glob (10)
1) ONE (1)

