
 University of Washington – Computer Science & Engineering
Winter 2018 Instructor: Mark Wyse February 5, 2018

1

CSE 351 Midterm Exam

Last Name:
SOLUTIONS

First Name:

UW Student ID Number:

UW NetID (username):

Academic Integrity Statement:
All work on this exam is my own. I had no prior knowledge of

the exam contents, nor will I share the contents with others in

CSE 351 who haven’t taken it yet. Violation of these terms may

result in a failing grade. (please sign)

Do not turn the page until 11:30 am.

Instructions

• This exam contains 10 pages, including this cover page, and 2 reference pages.

• Show scratch work for partial credit but answer in the blanks and boxes provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.

• This exam is closed book and closed notes (no laptops, tablets, smartphones, wearable devices,

or calculators).

• Please silence/turn-off all cell phones, mobile devices, or other noise-making devices. Remove all

hats, headphones, and watches.

• You have 50 minutes to complete this exam.

Advice

• Read each question carefully.

• Read all questions first and start where you feel most confident.

• Relax and breathe; you are here to learn.

Question 1 2 3 4 5 Total

Points Possible 20 14 20 24 10 88

Points Earned

 UW NetID: _ _ _ _ _ _ _

2

Question 1: Number Representation [20 pts.]
(A) Complete the following table, assuming an 8-bit, Two’s Complement representation. Remember to

use the appropriate bit widths for the hex and binary columns. [6 pts.]

Decimal (base 10) Hexadecimal (base 16) Binary

1 0x 01 0b 0000 0001

103 0x 67 0b 0110 0111

-39 0x D9 0b 1101 1001

38 0x 26 0b 0010 0110

(B) Consider the table below where each row contains two 8-bit integral constants that will be compared

using the <, >, or == comparison. Determine which comparison makes the expression: Left Constant

(<, >, ==) Right Constant evaluate to True. Also state the type of comparison that is performed

(signed or unsigned) assuming we use the same type promotion and casting rules as C does. [8 pts.]

Left Constant Order (<, >, ==) Right Constant Comparison Type

1 > 0 signed

(int) 15U == 15 signed

(unsigned) -1 > -2 unsigned

(unsigned) -128 > 127 unsigned

127 > (int) 128U signed

(C) Given the 4-bit bit vector 0b1101, what is its value in decimal (base 10)? Circle your answer. [2 pts.]

a. 13

b. -3

c. -5

d. Undefined. Need to specify if we want unsigned, sign & magnitude, two’s complement,

etc.

(D) In the C programming language, unsigned overflow is well defined. Circle your answer. [2 pts.]

a. True

b. False

(E) In the C programming language, signed overflow is well defined. Circle your answer. [2 pts.]

a. True

b. False. C allows for a variety of signed integer representations, and thus signed overflow

results in undefined behavior

 UW NetID: _ _ _ _ _ _ _

3

Question 2: Pointers & Memory [14 pts.]
For this problem, assume we are executing on a 64-bit x86-64 machine (little endian). The current state

of memory (values in hex) is shown below.

int *x = 0x00;
long *y = 0x10;
unsigned short *z = 0x18;

Memory

Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00 ac ab dc ff 0a a8 11 fa

0x08 de ad ac ae 32 5a 42 ff

0x10 de ad be ef 10 ab cd 00

0x18 bb ff ee cc 00 11 22 33

0x20 01 00 02 00 08 00 0f 00

0x28 11 11 00 10 01 11 22 17

(A) Fill in the type and value (in hex) for each of the following C expressions. Remember to use the

appropriate bit widths. [8 pts.]

Expression (in C) Type Value (in hex)

z unsigned short * 0x 0000 0000 0000 0018

*x int 0x ffdc abac

x+3 int * 0x 0000 0000 0000 000c

*(y-1) long 0x ff42 5a32 aeac adde

z[3] unsigned short 0x 3322

(B) What are the values (in hex) stored in each register shown after the following x86-64 instructions are

executed? We are still using the state of memory shown above in part a. Remember to use the

appropriate bit widths. [6 pts.]

 Register Value (in hex)

 %rax 0x 0000 0000 0000 0008

 %rsi 0x 0000 0000 0000 0018

movb (%rsi), %cl %cl 0x bb

leaq 16(%rsi, %rsi, 4), %rcx %rcx 0x 0000 0000 0000 0088

movswl -10(%rsi, %rax, 4), $r8d %r8d 0x 0000 1722

 UW NetID: _ _ _ _ _ _ _

4

Question 3: C Programming & x86-64 Assembly [20 pts.]
Consider the following x86-64 assembly and (mostly blank) C code. The C code is in a file called foo.c

and contains a main function and a mystery function, foo. The function foo takes one input and returns

a single value. Fill in the missing C code that is equivalent to the x86-64 assembly for the function foo.

You can use the names of registers (without the %) for C variables. [18 pts.]

Hint: the function foo contains a for loop. There are more blank lines in the C Code than should be

required for your solution.

x86-64 Assembly: function foo C Code: file foo.c

 .text

 .globl foo

 .type foo, @function

foo:

 jmp .L2

.L4:

 testb $1, %dil

 je .L3

 movslq %edi, %rdx

 addq %rdx, %rax

.L3:

 subl $3, %edi

.L2:

 testl %edi, %edi

 jg .L4

 ret

#include <stdio.h> // for printf

long foo(int x) {

 long sum;

 for (int i = x; i > 0; i = i-3) {

 if (i & 0x1) {

 sum += i;

 }

 }

 return sum;

}

Note: variable names may be
different in students’ answers
(e.g., use rax instead of sum).

int main(int argc, char **argv) {

 long r = foo(10);

 printf(“r: %ld\n”, r);

 return 0;

}

Follow up: Assume the code in main is correct and has no errors. However, the provided x86-64 code for

function foo has a single correctness error. What is the error, and when might this error cause a problem

with the execution of foo? Answer in one or two short English sentences. [2 pts.]

The variable “sum” (or the variable we return from foo) is never initialized. Thus, it will hold a

random value prior to the loop, and the execution of foo will always be incorrect (unless the

variable happens to have the value 0 prior to loop execution).

UW NetID: _ _ _ _ _ _ _

5

Question 4: Procedures & The Stack [24 pts.]
Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun

long rfun(char *s) {

 if (*s) {

 long temp = (long)*s;

 s++;

 return temp + rfun(s);

 }

 return 0;

}

// Main Function - program entry

int main(int argc, char **argv) {

 char *s = "CSE351";

 long r = rfun(s);

 printf("r: %ld\n", r);

}

00000000004005e6 <rfun>:

 4005e6: 0f b6 07 movzbl (%rdi),%eax

 4005e9: 84 c0 test %al,%al

 4005eb: 74 13 je 400600 <rfun+0x1a>

 4005ed: 53 push %rbx

 4005ee: 48 0f be d8 movsbq %al,%rbx

 4005f2: 48 83 c7 01 add $0x1,%rdi

 4005f6: e8 eb ff ff ff callq 4005e6 <rfun>

 4005fb: 48 01 d8 add %rbx,%rax

 4005fe: eb 06 jmp 400606 <rfun+0x20>

 400600: b8 00 00 00 00 mov $0x0,%eax

 400605: c3 retq

 400606: 5b pop %rbx

 400607: c3 retq

UW NetID: _ _ _ _ _ _ _

6

(A) How much space (in bytes) does this function take up in our final executable? [2 pts.]

Count all bytes (middle column) or subtract address of first instruction (0x4005e6) from last

instruction (0x400607), then add 1 byte for the retq instruction.

(B) The compiler automatically creates labels it needs in assembly code. How many labels are used in

rfun (including the procedure itself)? [2 pts.]

The addresses 0x4005e6, 0x400600 (Base Case), 0x400606 (Exit)

(C) In terms of the C function, what value is being saved on the stack? [2 pts.]

The movsbq instruction at 0x4005ee puts *s into %rbx, which is pushed onto the stack by the pushq

instruction at 0x4005ed.

(D) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?

[2 pts.]

(E) Assume main calls rfun with char *s = “CSE351” and then prints the result using the printf

function, as shown in the C code above. Assume printf does not call any other procedure. Starting

with (and including) main, how many total stack frames are created, and what is the maximum depth

of the stack? [2 pts.]

Total Frames: 9 Max Depth: 8

main -> rfun(s) -> rfun(s+1) -> rfun(s+2) -> rfun(s+3) -> rfun(s+4) -> rfun(s+5) -> rfun(s+6)
 -> printf()

The recursive call to rfun(s+6), which handles the null-terminator in the string (base case),
still creates a stack frame since we consider the return address pushed to the stack during a
procedure call to be part of the callee’s stack frame.

34 Bytes

3

*s

0x4005fb

 UW NetID: _ _ _ _ _ _ _

7

(F) Assume main calls rfun with char *s = “CSE351”, as shown in the C code. After main calls

rfun, we find that the return address to main is stored on the stack at address 0x7fffffffdb38. On

the first call to rfun, the register %rdi holds the address 0x4006d0, which is the address of the input

string “CSE351” (i.e. char *s == 0x4006d0). Assume we stop execution prior to executing the

movsbq instruction (address 0x4005ee) during the fourth call to rfun. [14 pts.]

For each address in the stack diagram below, fill in both the value and a description of the entry.

The value field should be a hex value, an expression involving the C code listed above (e.g., a

variable name such as s or r, or an expression involving one of these), a literal value (integer

constant, a string, a character, etc.), “unknown” if the value cannot be determined, or “unused” if

the location is unused.

The description field should be one of the following: “Return address”, “Saved %reg” (where reg is

the name of a register), a short and descriptive comment, “unused” if the location is unused, or

“unknown” if the value is unknown.

Memory Address Value Description

0x7fffffffdb48 unknown %rsp when main is entered

0x7fffffffdb38 0x400616 Return address to main

0x7fffffffdb30 unknown original %rbx

0x7fffffffdb28 0x4005fb Return address

0x7fffffffdb20 *s, “C”, 0x43 Saved %rbx

0x7fffffffdb18 0x4005fb Return address

0x7fffffffdb10 *s, *(s+1), “S”, 0x53 Saved %rbx

0x7fffffffdb08 0x4005fb Return address

0x7fffffffdb00 *s, *(s+2), “E”, 0x45 Saved %rbx

 UW NetID: _ _ _ _ _ _ _

8

Question 5: Fun Stuff [10 pts.]
(A) Assume we are executing code on a machine that uses k-bit addresses, and each addressable memory

location stores b-bytes. What is the total size of the addressable memory space on this machine?

[2 pts.]

(B) In C, who/what determines whether local variables are allocated on the stack or stored in registers?

Circle your answer. [2 pts.]

Programmer Compiler Language (C) Runtime Operating System

(C) Assume procedure P calls procedure Q and P stores a value in register %rbp prior to calling Q. True

or False: P can safely use the register %rbp after Q returns control to P. Circle your answer. [2 pts.]

a. True. %rbp is a callee saved register.

b. False

(D) Assume we are implementing a new CPU that conforms to the x86-64 instruction set architecture

(ISA). Answer the following questions, in one or two English sentences, regarding this new CPU.

[4 pts.]

a. In modern x86-64 CPUs, a new add operation can be executed every cycle. However, for our

new CPU, we realize that we can save power by implementing the add operation such that we

can execute a new add only once every three cycles. Is our new CPU still a valid x86-64

implementation?

Yes. The x86-64 architecture/specification says nothing about how fast any operation

must execute in hardware.

b. In our new CPU implementation, we decide to change the width of register %rsp to be 48-

bits, since most modern x86-64 CPUs only use 48-bit physical addresses, but we still use the

name %rsp. Is our CPU still a valid x86-64 implementation?

No. The x86-64 architecture/specification determines the number and size of registers

available to the programmer/compiler. Changing this in our implementation violates the

architecture.

(2^k) * b

 UW NetID: _ _ _ _ _ _ _

9

CSE 351 Reference Sheet (Midterm)
Binary Decimal Hex

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Assembly Instructions
mov a, b Copy from a to b.

movs a, b Copy from a to b with sign extension. Needs two width specifiers.

movz a, b Copy from a to b with zero extension. Needs two width specifiers.

leaq a, b Compute address and store in b.
Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.

push src Push src onto the stack and decrement stack pointer.

pop dst Pop from the stack into dst and increment stack pointer.

call <func> Push return address onto stack and jump to a procedure.

ret Pop return address and jump there.

add a, b Add a to b and store in b (and sets flags).

sub a, b Subtract a from b (compute b-a) and store in b (and sets flags).

imul a, b Multiply a and b and store in b (and sets flags).

and a, b Bitwise AND of a and b, store in b (and sets flags).

sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).

shl a, b Shift value of b left by a bits, store in b (and sets flags).

cmp a, b Compare b with a (compute b-a and set condition codes based on result).

test a, b Bitwise AND of a and b and set condition codes based on result.

jmp <label> Unconditional jump to address.

j* <label> Conditional jump based on condition codes (more on next page).

set* a Set byte based on condition codes.

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

 UW NetID: _ _ _ _ _ _ _

10

Conditionals

Instruction Condition Codes (op) s, d test a, b cmp a, b

je “Equal” ZF d (op) s == 0 b & a == 0 b == a

jne “Not equal” ~ZF d (op) s != 0 b & a != 0 b != a

js “Sign” (negative) SF d (op) s < 0 b & a < 0 b-a < 0

jns (non-negative) ~SF d (op) s >= 0 b & a >= 0 b-a >= 0

jg “Greater” ~(SF^OF) & ~ZF d (op) s > 0 b & a > 0 b > a

jge “Greater or equal” ~(SF^OF) d (op) s >= 0 b & a >= 0 b >= a

jl “Less” (SF^OF) d (op) s < 0 b & a < 0 b < a

jle “Less or equal” (SF^OF) | ZF d (op) s <= 0 b & a <= 0 b <= a

ja “Above” (unsigned >) ~CF & ~ZF d (op) s > 0U b & a < 0U b > a

jb “Below” (unsigned <) CF d (op) s < 0U b & a > 0U b < a

Registers
 Name of “virtual” register

Name Convention
Lowest
4 bytes

Lowest
2 bytes

Lowest
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack Pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Sizes

C type
x86-64
suffix

Size
(bytes)

char b 1

short w 2

int l 4

long q 8

