
 University of Washington – Computer Science & Engineering
Winter 2018 Instructor: Mark Wyse March 14, 2018

1

CSE 351 Final Exam

Last Name:
Solutions

First Name:

UW Student ID Number:

UW NetID (username):

Academic Integrity Statement:
All work on this exam is my own. I had no prior knowledge of

the exam contents, nor will I share the contents with others in

CSE 351 who haven’t taken it yet. Violation of these terms may

result in a failing grade. (please sign)

Do not turn the page until 2:30 pm.

Instructions

• This exam contains 16 pages, including this cover page, and 2 reference pages.

• Show scratch work for partial credit but answer in the blanks and boxes provided.

• The last page is a reference sheet. Please detach it from the rest of the exam.

• This exam is closed book and closed notes (no laptops, tablets, smartphones, wearable devices,

or calculators).

• Please silence/turn-off all cell phones, mobile devices, or other noise-making devices. Remove all

hats, headphones, and watches.

• You have 110 minutes to complete this exam.

• Illegible handwriting and/or answers will receive a score of 0.

Advice

• Read each question carefully.

• Read all questions first and start where you feel most confident.

• Relax and breathe; you are here to learn.

Question 1 2 3 4 5 6 Total

Points Possible 25 6 41 10 9 24 115

Points Earned 25 6 41 10 9 24 115

 UW Student ID: _ _ _ _ _ _ _

2

Question 1: Warm-up [25 pts.]

True or False [10 pts.]
Answer the following questions by circling True or False. No explanation is needed.

(1) The ISA specifies the names of all registers but does not specify the size of registers.

True / False

(2) Two’s Complement is the only valid signed integer representation that could be used when

implementing a processor.

True / False

(3) Assume procedure P calls procedure Q and P stores a value in register %rbp prior to calling Q. After Q

returns control to P, P can safely use the register %rbp.

True / False

(4) When programming in C, the compiler determines whether local variables are allocated on the stack or

stored in registers.

True / False

(5) Your friend is designing a new processor that implements the x86-64 ISA for a new startup.

Unfortunately, they aren’t a very good at their job, and their processor has a cycle time (clock cycle) of

24 hours. That is, it takes 24 hours to execute a single instruction (assume that all instructions take only

a single cycle to execute). Your friend’s slow processor may still be a valid implementation of x86-64.

True / False

(6) In C, it is safe (there is no possibility of losing data) when casting from type int (4-byte integer) to

type float (4-byte IEEE floating point).

True / False

(7) In C, it is safe (there is no possibility of losing data) when casting from type int (4-byte integer) to

type double (8-byte IEEE floating point).

True / False

(8) In Java, all non-primitive variables are references to objects.

True / False

(9) In the context of memory allocators, and compared to an implicit free list, an allocator using an explicit

free list is much faster at allocating blocks when most of the memory is free (unused).

True / False -- faster when memory is full (explicit free list size shrinks as memory is allocated)

(10) You learned at least one new thing in 351 this quarter.

True / False

 UW Student ID: _ _ _ _ _ _ _

3

Fill in the Blank / Short-Answer [15 pts.]
Answer the following questions in the spaces provided. Illegible answers will not be graded.

(11) A Process provides two key abstractions to each program. What are they? [2 pts.]

(12) What are the two types of locality? Provide the name and definition (one English

sentence/fragment or less) for each. [4 pts.]

(13) Name the type of synchronous exception for each of the following definitions: [3 pts.]

a. An unintentional, but possibly recoverable exception caused

by the execution of an instruction.

b. An unintentional and unrecoverable exception, caused for

example by a machine check, that stops the execution of the

current program.

c. An intentional transfer of control to the Operating System

(Kernel) to perform some function as requested by the user

program.

(14) In IEEE 754 single precision floating point (32-bit), 8 bits are used to represent the exponent.

Assume we have a new floating-point type that uses 4 bits for the exponent, but otherwise follows all

the same conventions as IEEE 754 floating point. What is the bias for this new type? [1 pt.]

Logical Control Flow Private Address Space

 Name Definition

1. Temporal
Recently referenced items are likely to be referenced again in the near

future.

2. Spatial
Items/data with nearby addresses tend to be referenced close together in

time.

Fault

Abort

Trap

7, formula is bias = (2^(k-1) – 1)

 UW Student ID: _ _ _ _ _ _ _

4

(15) What are the three types of Cache Misses? [3 pts.]

(16) Assume we are executing code on a machine that uses k-bit virtual addresses, and each

addressable memory location stores b-bytes. What is the total size of the addressable virtual memory

space on this machine? [2 pts.]

Question 2: Number Representation [6 pts.]
In computer graphics, a pixel’s color is determined by a combination of the colors red (R), green (G), and

blue (B). Let’s assume that we have a new display where each pixel will display either red, greed, or blue.

A pixel will only display a single color at a time, and it must be one of R, G, or B, so we can use pixels to

encode values in base 3! Assume we use the encoding 0↔R, 1↔G, 2↔B. For example, 6 = 2*(31) +

0*(30) would be encoded as BR.

(A) What is the unsigned decimal value of the set of pixels displaying GGRB? [2 pts.]

1*3^3 + 1*3^2 + 0*3^1 + 2*3^0 = 27 + 9 + 0 + 2 = 38

(B) If we have 7 bits of binary data that we want to store as a set of pixels, how many pixels would it take

to store that same data. [2 pts.]

7 bits can represent 128 things. Powers of 3: 1, 3, 9, 27, 81, 243. So, we need 5 pixels, which can

represent up to 242 things.

(C) Assume we can perform the left shift operation on a set of pixels. Similar to in binary, we will shift in

the 0 value, or equivalently a Red pixel. For example, our pixels from part (A) left-shifted by 1 would

become GGRBR, or GGRB << 1 = GGRBR. What arithmetic operation occurs when left shifting by

1? [2 pts.]

1*3^4 + 1*3^3 + 0*3^2 + 2*3^1 + 0*3^0 = 81 + 27 + 0 + 2*3 + 0 = 114 = 3*38

Compulsory Capacity Conflict

(2k) * b

38

5 pixels

multiply by 3

 UW Student ID: _ _ _ _ _ _ _

5

Question 3: Caching, Address Translation, and Virtual Memory [41 pts.]
This question is a multi-part question that deals with several memory related topics we have studied. Each

part is designed to be independent from the others.

Part I. Caching [14 pts.]
Assume we are using a computer system with a physically addressed data cache. Physical addresses are 7

bits in length. The data cache has a total capacity of 64 bytes, is 2-way set associative, and the cache

block size is 4 bytes. The cache uses LRU replacement, write-back, and write-allocate policies. Assume

the state of the cache is as shown below (dirty bit omitted due to space). Assume our system is Little

Endian and stores multi-byte data in little endian form (like x86-64 systems).

Data Cache

Index Tag Valid B0 B1 B2 B3 Tag Valid B0 B1 B2 B3

0 - 0 - - - - 0 1 FB 17 47 E6

1 1 1 D9 C6 07 01 2 1 D9 C6 07 01

2 1 1 FA 34 8C 14 - 0 - - - -

3 1 1 8D 76 26 5F 0 1 1B BB CB 34

4 2 0 2F F1 6A E8 3 1 2F F1 6A E8

5 - 0 - - - - 3 1 76 C6 B2 D3

6 - 0 - - - - - 0 - - - -

7 3 0 F5 CA 08 16 2 1 35 89 85 4B

(A) How many bits are used for the cache index, offset, and tag fields? [3 pts.]

Tag bits Index bits Offset bits

2 3 2

(B) How many management bits (bits other than the block data) are there in every line in the data cache?

[1 pt.]

Management bits

4

(Tag bits + valid + dirty)

(C) For each of the following cache accesses, provide the cache tag, index, and offset (in hex). Then,

determine if the request results in a cache hit (mark “Y” or “N”). If a cache hit occurs, provide the

data returned from the cache for the access size requested (given in bytes) in hex. [10 pts.]

Physical

Address

Request

Size (Bytes)
Tag Index Offset Hit (Y/N)

Data

Returned

0x24 2 0x1 0x1 0x0 Y 0xC6D9

0x51 3 0x2 0x4 0x1 N n/a

0x51 = 0b 10 100 01, 0x24 = 0b 01 001 00

 UW Student ID: _ _ _ _ _ _ _

6

Part II. Address Translation [22 pts.]
As in Part I, assume our computer system has 7-bit physical addresses and is a little-endian system.

Assume virtual addresses are 8-bits, virtual and physical pages of memory are 16 bytes in size, and the

TLB holds 4 entries and is 2-way set associative. Assume the state of the TLB and Page Table are as

shown below. The tag and PPN in the TLB are shown in hex. The PTE and PPN in the Page Table are

shown in hex.

TLB
Set Tag Valid PPN Tag Valid PPN

0 3 1 7 1 0 1

1 - 0 - 7 1 2

Page Table
PTE PPN Valid PTE PPN Valid

0 2 0 8 4 0

1 - 0 9 6 1

2 4 1 A - 0

3 5 1 B - 0

4 5 0 C 1 1

5 7 1 D - 0

6 1 0 E 0 1

7 - 0 F 2 1

(A) How many bits are used for the VPN, VPO, TLB tag, TLB index, PPN, and PPO? [6 pts.]

VPN VPO TLB Tag TLB Index PPN PPO

4 bits
4 bits

(16B pages)
3 bits 1 bit 3 bits

4 bits

(16B pages)

(B) For each of the following virtual addresses, provide the VPN, VPO, TLBT, and TLBI (in hex). Then,

determine if a TLB Hit occurs and if a Page Fault occurs (mark “Y” or “N” for each). If possible,

provide the PPN and compute the physical address (in hex). If the PPN cannot be determined, leave

the PPN and PA entries blank. [16 pts.]

VA VPN VPO
TLB

Tag

TLB

Index

TLB Hit

(Y/N)

Page

Fault

(Y/N)

PPN PA

0xF4 F 4 7 1 Y N 2 24

0x31 3 1 1 1 N N 5 51

0xF4 = 0b 1111 0100, 0x31 = 0b 0011 0001

 UW Student ID: _ _ _ _ _ _ _

7

Part III. Cache and TLB Performance [5 pts.]
Assume we execute the C code given below on the computer system we have described in Parts I and II.

However, assume that both the Cache and TLB start cold (empty). Assume that the array of structs named

structArr is allocated at virtual address 16, or 0x10, and virtual pages are mapped to physical pages in

a linear manner, starting with physical page 0 (PPN = 0).

typedef struct {
 byte b;
 short s;
} myStruct;

#define N 16

int main(int argc, char **argv) {
 // Assume structArr is located at address 16 (0x10)
 myStruct *structArr = (myStruct*) malloc(N * sizeof(myStruct));
 // code to initialize array elements omitted
 short sum = 0;
 for (int i = 0; i < N; i++) {
 sum += structArr[i].s;
 }
}

(A) Compute both the Cache and TLB miss rates for the accesses to structArr in the code above.

Remember, the cache and TLB start cold. Express your answers as a percentage. [2 pts.]

Cache Miss Rate TLB Miss Rate

100% (one struct per cache line) 25% (a page holds 4 structs)

(B) What would happen to the TLB miss rate if the page size was doubled? Circle your answer. [1 pt.]

a. Increase

b. Decrease

c. No Change

(C) What would happen to the Cache miss rate if the capacity of the cache was doubled while keeping the

associativity and block size fixed? Circle your answer. [1 pt.]

a. Increase

b. Decrease

c. No Change

(D) This question is independent from the previous questions in Part III. Compute the Average Memory

Access Time (AMAT) assuming it takes 100 ns to get a block of data from main memory, the data

cache has a hit time of 2 ns, and the data cache miss rate is 2%. Don’t forget to use the correct units

for your answer! [1 pt.]

4 ns

AMAT = HT + MR*MP =

2 + 0.02*100

 UW Student ID: _ _ _ _ _ _ _

8

Question 4. Pointers and Memory [10 pts.]
For this problem we are using a 64-bit x86-64 machine (little endian). Below is the recursive function

rfun from the midterm exam, showing where the code is stored in memory.

00000000004005e6 <rfun>:

 4005e6: 0f b6 07 movzbl (%rdi),%eax

 4005e9: 84 c0 test %al,%al

 4005eb: 74 13 je 400600 <rfun+0x1a>

 4005ed: 53 push %rbx

 4005ee: 48 0f be d8 movsbq %al,%rbx

 4005f2: 48 83 c7 01 add $0x1,%rdi

 4005f6: e8 eb ff ff ff callq 4005e6 <rfun>

 4005fb: 48 01 d8 add %rbx,%rax

 4005fe: eb 06 jmp 400606 <rfun+0x20>

 400600: b8 00 00 00 00 mov $0x0,%eax

 400605: c3 retq

 400606: 5b pop %rbx

 400607: c3 retq

(A) What are the values (in hex) stored in each register shown after the following x86-64 instructions are

executed? Remember to use the appropriate bit widths. [6 pts.]

 Register Value (in hex)

 %rax 0x 0000 0000 0040 05e6

 %rsi 0x 0000 0000 0000 0005

movb (%rax), %cl %cl 0x0f

leaq 8(%rax, %rsi, 2), %rcx %rcx 0x 0000 0000 0040 05f8

movswl (%rax, %rsi), $r8d %r8d 0x 0000 1374

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer

arithmetic. Let char* cp = 0x4005ee. [4 pts.]

char v1 = *(cp + __2___); // set v1 = 0xbe

int* v2 = (int*)((____short____*)cp – 8); // set v2 = 0x4005de

The only 0xbe byte in rfun is found at address 0x4005f0, 2 bytes beyond cp.

The difference between v2 and cp is 16 bytes. Since by pointer arithmetic we are moving 8 “things”

away, cp must be cast to a pointer to a data type of size 2 bytes, such as short.

 UW Student ID: _ _ _ _ _ _ _

9

Question 5: Processes [9 pts.]
(A) The block of code shows an infinite loop of the fork() process being called (a.k.a. a forkbomb),

briefly explain why this is bad, specifically how it affects the system that it is being run on. [2 pts.]

void forkbomb() {

 while (1) {

 fork();

 }

}

Answer: A forkbomb will starve the system of its resources by creating an infinite number of

processes. The system can support a finite number of processes, and will eventually run out of

process IDs to assign.

(B) How many total processes are created from the following block of code? Assume the original process

is counted in the total number of processes. [2 pts.]

for (int i = 0; i < n; i++) {

 fork();

}

Answer: There will be 2^n processes created. If we unroll the loop this code is equivalent to n fork()

calls in sequence. The original process will call fork() n times, the second process will call fork() n-1

times, etc. This results in a doubling of processes at each fork, thus starting with the original process,

and doubling n times, gives 2^n total processes.

 UW Student ID: _ _ _ _ _ _ _

10

(C) List three possible outputs of the following block of code. Write your answers into the right hand

column of the table below. Note: there are more than three possible outputs; any three will suffice. [3

pts.]

int main() {
 int x = 1;
 printf(“%d ”, x);
 if (fork() != 0) {
 x = x << 2;
 printf(“%d ”, x);
 fork();
 x = x << 1
 printf(“%d ”, x);
 } else {
 x = x << 4
 printf(“%d ”, x);
 }
 exit(0);
}

Write your three answers in this box:

The original process prints 1 – 4 – 8 and the

second child process prints 8 either before or

after the original process prints 8. So those two

processes always produce the output sequence 1

– 4 – 8 – 8. The first child process prints 16. That

can happen any time after the first process prints

1. So the possible output sequences are

1 16 4 8 8

1 4 16 8 8

1 4 8 16 8

1 4 8 8 16

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when

execv is run on a process. [2 pts.]

 Page Table ____Y____ PTBR ___N_____ Stack ___Y_____ Code ___Y_____

The process already has a page table, so the PTBR does not need to be updated, but the old PTEs need to

be invalidated. We replace/update the old process image’s virtual address space, including Stack and

Code.

 UW Student ID: _ _ _ _ _ _ _

11

Question 6: Procedures & The Stack [24 pts.]
Consider the following x86-64 assembly and C code for the recursive function rfun.

// Recursive function rfun

long rfun(char *s) {

 if (*s) {

 long temp = (long)*s;

 s++;

 return temp + rfun(s);

 }

 return 0;

}

// Main Function - program entry

int main(int argc, char **argv) {

 char *s = "Yay!";

 long r = rfun(s);

 printf("r: %ld\n", r);

}

00000000004005e6 <rfun>:

 4005e6: 0f b6 07 movzbl (%rdi),%eax

 4005e9: 84 c0 test %al,%al

 4005eb: 74 13 je 400600 <rfun+0x1a>

 4005ed: 53 push %rbx

 4005ee: 48 0f be d8 movsbq %al,%rbx

 4005f2: 48 83 c7 01 add $0x1,%rdi

 4005f6: e8 eb ff ff ff callq 4005e6 <rfun>

 4005fb: 48 01 d8 add %rbx,%rax

 4005fe: eb 06 jmp 400606 <rfun+0x20>

 400600: b8 00 00 00 00 mov $0x0,%eax

 400605: c3 retq

 400606: 5b pop %rbx

 400607: c3 retq

UW Student ID: _ _ _ _ _ _ _

12

(A) How much space (in bytes) does this function take up in our final executable? [2 pts.]

(B) The compiler automatically creates labels it needs in assembly code. How many labels are used in

rfun (including the procedure itself)? [2 pts.]

(C) In terms of the C function, what value is being saved on the stack? [2 pts.]

(D) What is the return address to rfun that gets stored on the stack during the recursive calls (in hex)?

[2 pts.]

(E) Assume main calls rfun with char *s = "Yay!" and then prints the result using the printf

function, as shown in the C code above. Assume printf does not call any other procedure. Starting

with (and including) main, how many total stack frames are created, and what is the maximum depth

of the stack? [2 pts.]

Total Frames: 7 Max Depth: 6

main -> rfun(s) -> rfun(s+1) -> rfun(s+2) -> rfun(s+3) -> rfun(s+4)
 -> printf()

The recursive call to rfun(s+4), which handles the null-terminator in the string does create a

stack frame since we consider the return address pushed to the stack during a procedure call

to be part of the callee’s stack frame.

34 bytes

3

*s

0x4005fb

UW Student ID: _ _ _ _ _ _ _

13

(F) Assume main calls rfun with char *s = "Yay!", as shown in the C code. After main calls

rfun, we find that the return address to main is stored on the stack at address 0x7fffffffdb38. On
the first call to rfun, the register %rdi holds the address 0x4006d0, which is the address of the input
string "Yay!" (i.e. char *s == 0x4006d0). Assume we stop execution prior to executing the
movsbq instruction (address 0x4005ee) during the fourth call to rfun. [14 pts.]

For each address in the stack diagram below, fill in both the value and a description of the entry.

The value field should be a hex value, an expression involving the C code listed above (e.g., a
variable name such as s or r, or an expression involving one of these), a literal value (integer
constant, a string, a character, etc.), “unknown” if the value cannot be determined, or “unused” if
the location is unused.

The description field should be one of the following: “Return address”, “Saved %reg” (where reg is
the name of a register), a short and descriptive comment, “unused” if the location is unused, or

“unknown” if the value is unknown.

Memory Address Value Description

0x7fffffffdb48 unknown %rsp when main is entered

0x7fffffffdb38 0x400616 Return address to main

0x7fffffffdb30 unknown original %rbx

0x7fffffffdb28 0x4005fb Return address

0x7fffffffdb20 *s, “Y” Saved %rbx

0x7fffffffdb18 0x4005fb Return address

0x7fffffffdb10 *s, *(s+1), “a” Saved %rbx

0x7fffffffdb08 0x4005fb Return address

0x7fffffffdb00 *s, *(s+2), “y” Saved %rbx

 UW Student ID: _ _ _ _ _ _ _

14

This page intentionally left blank.

 UW Student ID: _ _ _ _ _ _ _

15

CSE 351 Reference Sheet (Final)

Binary Decimal Hex

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Assembly Instructions

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

Sizes

C type Suffix Size

char b 1

short w 2

int l 4

long q 8

mov a, b Copy from a to b.

movs a, b Copy from a to b with sign extension. Needs two width specifiers.

movz a, b Copy from a to b with zero extension. Needs two width specifiers.

lea a, b Compute address and store in b.

Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.
push src Push src onto the stack and decrement stack pointer.

pop dst Pop from the stack into dst and increment stack pointer.

call <func> Push return address onto stack and jump to a procedure.
ret Pop return address and jump there.
add a, b Add from a to b and store in b (and sets flags).

sub a, b Subtract a from b (compute b-a) and store in b (and sets flags).

imul a, b Multiply a and b and store in b (and sets flags).

and a, b Bitwise AND of a and b, store in b (and sets flags).

sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).

shl a, b Shift value of b left by a bits, store in b (and sets flags).

cmp a, b Compare b with a (compute b-a and set condition codes based on result).

test a, b Bitwise AND of a and b and set condition codes based on result.

jmp <label> Unconditional jump to address.
j* <label> Conditional jump based on condition codes (more on next page).
set* a Set byte based on condition codes.

 UW Student ID: _ _ _ _ _ _ _

16

Instruction Condition Codes (op) s, d test a, b cmp a, b

je “Equal” ZF d (op) s == 0 b & a == 0 b == a

jne “Not equal” ~ZF d (op) s != 0 b & a != 0 b != a

js “Sign” (negative) SF d (op) s < 0 b & a < 0 b-a < 0

jns (non-negative) ~SF d (op) s >= 0 b & a >= 0 b-a >= 0

jg “Greater” ~(SF^OF) & ~ZF d (op) s > 0 b & a > 0 b > a

jge “Greater or equal” ~(SF^OF) d (op) s >= 0 b & a >= 0 b >= a

jl “Less” (SF^OF) d (op) s < 0 b & a < 0 b < a

jle “Less or equal” (SF^OF) | ZF d (op) s <= 0 b & a <= 0 b <= a

ja “Above” (unsigned >) ~CF & ~ZF d (op) s > 0U b & a < 0U b > a

jb “Below” (unsigned <) CF d (op) s < 0U b & a > 0U b < a

Registers C Functions
 Name of “virtual” register

Name Convention
Lowest
4 bytes

Lowest
2 bytes

Lowest
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack Pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Virtual Memory Acronyms
MMU Memory Management Unit VPO Virtual Page Offset TLBT TLB Tag

VA Virtual Address PPO Physical Page Offset TLBI TLB Index

PA Physical Address PT Page Table CT Cache Tag

VPN Virtual Page Number PTE Page Table Entry CI Cache Index

PPN Physical Page Number PTBR Page Table Base Register CO Cache Offset

void* malloc(size_t size):

Allocate size bytes from the heap.

void* calloc(size_t n, size_t size):

Allocate n*size bytes and initialize to 0.

void free(void* ptr):

Free the memory space pointed to by ptr.

size_t sizeof(type):

Returns the size of a given type (in bytes).

char* gets(char* s):

Reads a line from stdin into the buffer.

pid_t fork():

Create a new child process (duplicates parent).

pid_t wait(int* status):

Blocks calling process until any child process

exits.

int execv(char* path, char* argv[]):

Replace current process image with new image.

