

University of Washington – Computer Science & Engineering

Summer 2018 Instructor: Justin Hsia 2018-07-18

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 10:50.
Instructions

 This exam contains 5 pages, including this cover page. Show scratch work for partial

credit, but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 60 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 22 20 14 24 20 100

2

Question 1: Number Representation [22 pts]

Consider the signed char x = 0b 1010 1000.

(A) What is the value of x? You may answer as the sum of powers of 2. [2 pt]

-27+25+23 = -88

(B) In theory (math), what is the difference in the values of (unsigned char)x and x?

Your answer should be a decimal number. [2 pt]

(unsigned char)x has value 27+25+23. 2n = 28 = 256

(C) In C, what is the value of char y = (unsigned char)x – x;? [2 pt]

Subtraction is done at the bit level, so the result is all zeros. 0

Also, the “result” of 256 can’t be represented by an 8-bit integer.

(D) Which of the following expressions will result in a positive (non-negative, non-zero) result?

(Circle one) [4 pt]

x<<4
0b10000000

x^0x81
0b00101001

x|~x
0b11111111

!(x>>1)
0

For the rest of this problem we are working with a new floating point datatype (flo) that

follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

Sign (1) Exponent (3) Mantissa (4)

(E) What is the value of the numeral from above 0b 1010 1000 in this representation? [4 pt]

S = 1, E = 0b010, M = 0b1000. bias=23-1-1=3. -0.75

(-1)1 ൈ 1.10002 ൈ 22-3 = -1.12 ൈ 2-1 = -0.112 = -(0.5 + 0.25)

(F) What is the encoding of the most negative real number that we can represent (∞ is

not a real number) in this floating point scheme (binary)? [4 pt]

Largest normalized number, but negative: 0b 1 110 1111

(G) What will occur if we cast flo f = (flo)x (i.e. try to represent the value stored in x

as a flo)? (Circle one) [4 pt]

Rounding Underflow Overflow None of these

-88 = –(64+16+8) = –(26+24+23) = –10110002 = –1.0110ൈ26. Mantissa fits, but max

exponent is 0b110 – bias = 6 – 3 = 3.

SID: __________

3

Question 2: Pointers & Memory [20 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of

memory (values in hex) is shown below:

char* charP = 0x12
int* intP = 0x8
long* longP = 0x30

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 AC AB 03 01 BA 5E BA 11

0x08 5E 00 68 0C BE A7 CE FA

0x10 1D B0 99 DE AD 60 BB 40

0x18 14 1D EC AF EE FF CO 70

0x20 BA B0 41 20 80 AA BE EF

(A) Using the values shown above, complete the C code below to fulfill the behaviors described

in the comments using pointer arithmetic. [8 pt]

v1: Byte 0xAF is at address 0x1B. 0x1B - charP = 9.

v2: No dereferencing; just pointer arithmetic (scaled by sizeof(int) = 4).

intP = 0x8. To get to 0x14, need to add 12 (3 by pointer arithmetic).

(B) What are the values (in hex) stored in each register shown after the following x86-64

instructions are executed? We are still using the state of memory shown above.

Remember to use the appropriate bit widths. [12 pt]

 Register Data (hex)

 %rdi 0x 0000 0000 0000 0019

 %rsi 0x 0000 0000 0000 0003

leab 7(%rsi), %r9b %r9b 0x 0A

movl (%rdi,%rsi), %eax %eax 0x 70C0 FFEE

movzbq -2(,%rsi,8), %r8 %r8 0x 0000 0000 0000 0000 00BB

leab calculates address 7 + 0x3.

movl pulls four bytes starting at memory address 0x1C (remember little endian!).

movzbq instruction pulls the byte at memory address 0x3*8-2 = 22 = 0x16, which is

0xBB. Then zero-extend out to 8 bytes.

char v1 = *(charP + ___9___); // set v1 = 0xAF

int* v2 = &intP[___3___]; // set v2 = 0x14

4

Question 3: Design Questions [14 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

(A) Name the two issues with Sign and Magnitude that Two’s Complement fixed. [4 pt]

 Two zeros.

 Bad arithmetic.
 Negatives incrementing in the wrong direction.

(B) Briefly describe an advantage of making addresses and registers both the width of a word.

[4 pt]

 Addresses are guaranteed to be able to fit/be stored in a register.
 Memory operands can be specified easily using registers.

(C) Briefly explain your answers to the following questions if we moved 1 bit from the

mantissa field (now 22 bits) to the exponent field (now 9 bits) in floating point: [6 pt]

Will the total number of representable floats (normalized + denormalized + special
cases) change? Circle one: Yes No

Explanation: We still have the same fixed width (32 bits), so we can still only
represent 232 floats. We’ve changed the numbers we represent, but not how many we
represent.

Credit also given if Yes was argued by saying that there are more NaN’s than before, so
fewer floats representable. This relies on counting all NaN’s as a single “special case,”
which wasn’t the intention of the question, but is a reasonable interpretation.

The frequency of rounding will (circle one): Increase, Decrease, or Stay the same

Explanation: By shortening the M field, we lose precision. There are now more
numbers than before that will have some value rounded off when encoded (any number
whose mantissa has 1’s at least 23 digits apart instead of at least 24 digits apart).

The gaps between representable numbers doubled for the same exponent, so it’s easier
to fall in-between representable numbers and get rounded.

SID: __________

5

Question 4: C & Assembly [24 pts]

Answer the questions below about the following x86-64 assembly function:

(A) What variable type would %rdi be in the corresponding C program? [4 pt]

%rcx is calculated from %rdi with scale 2 (Line 5) and then __short*__ rdi

 dereferenced with a movzwl instruction (Line 6).

(B) Briefly describe why Line 4 is needed before Line 5. [4 pt]

Memory operands (Line 5) must take 64-bit register names, since addresses are 8 bytes
wide. So the 4-byte value in %eax, must be extended to 8 bytes beforehand.

(C) This function uses a for loop. Fill in the corresponding parts below, using register names

as variable names. None should be blank. [8 pt]

for (__eax = 0___ ; __eax < esi__ ; __eax++__)

Init is from Line 1, Test is from Lines 2-3, Update is from Line 9.

(D) If we call this function with the value 3 as the second argument, what value is

returned? [4 pt]

Return value is %rax and we exit the loop when %eax = %esi. 3

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [4 pt]

Overrides an array of shorts with the parity of the entries (1 for odd, 0 for even –
given by the least significant bit).

mystery:

 movl $0, %eax # Line 1

.L2: cmpl %esi, %eax # Line 2

 jge .L1 # Line 3

 movslq %eax, %rdx # Line 4

 leaq (%rdi,%rdx,2), %rcx # Line 5

 movzwl (%rcx), %edx # Line 6

 andl $1, %edx # Line 7

 movw %dx, (%rcx) # Line 8

 addl $1, %eax # Line 9

 jmp .L2 # Line 10

.L1: retq # Line 11

6

Question 5: Procedures & The Stack [20 pts]

The recursive power function power() calculates base^pow and its x86-64 disassembly is

shown below:

(A) How much space (in bytes) does this function take up in our final executable? [2 pt]

Count all bytes (middle columns) or subtract address of next
instruction (0x4005bc) from 0x4005a0. 28 B

(B) Circle one: The label power will show up in which table(s) in the object file? [4 pt]

Symbol Table Relocation Table Both Tables Neither Table

power is called in this file (recursively) and can be called by external files, so in both.

(C) Which register is being saved on the stack? [2 pt]

See pushq instruction (0x4005a4). %rbx

int power(int base, unsigned int pow) {
 if (pow) {
 return base * power(base,pow-1);
 }
 return 1;
}

00000000004005a0 <power>:

 4005a0: 85 f6 testl %esi,%esi

 4005a2: 74 10 je 4005b4 <power+0x14>

 4005a4: 53 pushq %rbx

 4005a5: 89 fb movl %edi,%ebx

 4005a7: 83 ee 01 subl $0x1,%esi

 4005aa: e8 f1 ff ff ff call 4005a0 <power>

 4005af: 0f af c3 imull %ebx,%eax

 4005b2: eb 06 jmp 4005ba <power+0x1a>

 4005b4: b8 01 00 00 00 movl $0x1,%eax

 4005b9: c3 ret

 4005ba: 5b popq %rbx

 4005bb: c3 ret

SID: __________

7

(D) What is the return address to power that gets stored on the stack? Answer in hex. [2 pt]

The address of the instruction after call. 0x4005af

(E) Assume main calls power(8,3). Fill in the snapshot of memory below the top of the

stack in hex as this call to power returns to main. For unknown words, write

“unknown”. [6 pt]

0x7fffeca3f748 <ret addr to main>

power(8,3)
0x7fffeca3f740 <original rbx>

0x7fffeca3f738 0x4005af <ret addr>
power(8,2)

0x7fffeca3f730 0x8 <base>

0x7fffeca3f728 0x4005af <ret addr>
power(8,1)

0x7fffeca3f720 0x8 <base>

0x7fffeca3f718 0x4005af <ret addr> power(8,0)

0x7fffeca3f710 unknown

The base case doesn’t push %rbx onto the stack, so 0x7fffeca3f710 remains

unknown.

(F) Harry the Husky claims that we could have gotten away with not pushing a register onto

the stack in power. Is our intrepid school’s mascot correct or not? Briefly explain. [4 pt]

Harry is correct! base doesn’t change between recursive calls and power
doesn’t call other procedures, so there is no need to save %rdi in %rbx.

In fact, if you compile the C function with an optimization flag of -O2, it doesn’t push
%rbx onto the stack!

