

University of Washington – Computer Science & Engineering

Summer 2018 Instructor: Justin Hsia 2018-08-17

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 10:50.
Instructions

 This exam contains 5 double-sided pages, including this cover page. Show scratch work for

partial credit, but put your final answers in the boxes and blanks provided.

 Please write your Student ID number (7 digits) in the upper-right corner of every odd page.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed

one page (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 60 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 6 Total

Possible Points 20 22 16 20 16 6 100

2

Question 1: Arrays & Structs [20 pts]

Answer the questions below about the following C code which uses a struct.
strcpy(char *dst, char *src) copies the string from src to dst, including the null-terminator.

(A) How much memory, in bytes, does an instance of airport use? How many of those bytes are

internal fragmentation and external fragmentation? [6 pt]

sizeof(airport) Internal External

32 bytes 5 bytes 4 bytes

Alignment requirements listed above in the code as red comments next to the struct fields. An

airport instance will look as shown below:

traffic code name built
0 8 11 16 24 28 32

Between code and name is internal fragmentation; external fragmentation is at the end.

(B) Harry the Husky points out that Line 9 causes buffer overflow because strcpy() copies the null

terminator! What is the minimum length of string literal (e.g. "SEA" is length 3) that we can use

in the 2nd argument to strcpy() that overwrites useful data? [4 pt]

This causes the null terminator to overwrite the first byte of name. 8

(C) Complete the formula below for value returned by &(airports[3].code[0]). You may use

the variable A to represent sizeof(airport) (i.e. the correct answer to Part A). [4 pt]

(char *)&airports + 3*A + 8

(D) Give an alternate ordering of the fields (one has been given for you) that reduces the size of

the struct AND eliminates internal fragmentation: [6 pt]

(1) traffic (2) name (3) built (4) code

1 typedef struct { // K:
2 long traffic; // 8
3 char code[3]; // 1
4 char *name; // 8
5 int built; // 4
6 } airport; // Kmax = 8

7 airport seatac;
8 seatac.traffic = 46934194; // 2017 annual passenger traffic
9 strcpy(seatac.code, "SEA");
10 seatac.name = "Seattle-Tacoma International Airport";
11 seatac.built = 1944;
12 airport airports[10];

SID: ____________

3

Question 2: Caching [22 pts]

We have 256 KiB of RAM and a 512-byte data cache that is 2-way set associative with 64-byte blocks

and LRU replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: [3 pt]

Tag bits Index bits Offset bits
10 2 6

18 address bits. logଶ 64 ൌ 6 offset bits. 512-B cache = 8 blocks. 2 lines/set → 4 sets.

(B) The code snippet below accesses an array of longs. Assume that i is stored in a register. How

many memory accesses occur in each iteration of the for-loop? [1 pt]

#define N 256

long data[N]; // &data = 0x10000 (physical addr)

data[0] = 0; // warm up the cache and initialize sum

for (i = 1; i < N; i += 1)

 data[0] += data[i];

(C) For the code above with an initially cold cache, what is the first/smallest value of i that

causes a block to be evicted from the cache? [6 pt]

i = 64

&data[0] is the start of a block that goes in set 0. 64 bytes per block = 8 longs so every 8

values of i pulls a new block into the cache. We have to load 8 blocks (i from 0 to 63) to fill the

cache (2 blocks per set into 4 sets). The next value of i then evicts a block from set 0.

(D) For each of the proposed (independent) changes, draw ↑ for “increased”, ― for “no change”, or

↓ for “decreased” to indicate the effect on the answer to Part C for the code above: [8 pt]

Use int instead __↑__ Double the associativity __―__

Random replacement __―__ Half the block size __―__

The answer to Part C is determined only by the number of array elements we can fit in the cache

(data type and cache size).

(E) Harry the Husky claims that we could improve our code’s performance (this is unrelated to Part

C) by storing our sum in a register inside our loop and then storing the final value into

data[0] after the loop finishes. [4 pt]

Circle one: Agree Disagree

Explanation: Accessing registers is faster than the cache hit time, so reducing the number of
memory accesses (regardless of hit or miss) will improve our execution time.

3 (R data[0], R data[i], W data[0])

4

Question 3: Processes [16 pts]

(A) The following function prints out three numbers. In the following blanks, list three possible

outcomes: [6 pt]

(1) _3 9 6 __________

(2) _9 3 6 __________

(3) _9 6 3 __________

(B) In the code above, we will refer to the 3 processes as the “parent,” “child,” and “grandchild.” Who

cleans up the grandchild process? Circle the true statement below. [2 pt]

Reaped by
parent

Reaped by
child

Reaped by
init/systemd

Must be
manually killed

(C) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated during

a context switch. [4 pt]

Stack __N__ %rsp __Y__ PTBR __Y__ %rip __Y__

Each process has its own virtual address space, however, we do need to switch over to the new

page table. Registers are part of the process state and must be updated for the new process.

(D) Harry the Husky wants to write a concurrent algorithm using fork() where all processes write

to different parts of the same array in the heap. Will this work or not? Explain briefly.

[4 pt]

Circle one: Yes No

Explanation: Each process gets its own independent virtual address space, so you can’t share
data between processes this way.

void concurrent(void) {
 int x = 3, status;
 if (fork() == 0) {
 x += 3;
 if (fork() == 0) {
 x += 3;
 } else {
 wait(&status);
 }
 printf("%d ",x);
 exit(0);
 }
 printf("%d ",x);
 wait(&status);
} x=3 fork

fork

print
3

print

print

9

6

wait

Simplified
Process
Diagram:

wait

SID: ____________

5

Question 4: Virtual Memory [20 pts]

Our system has the following setup:

 16-bit virtual addresses and 12-bit physical addresses with 128-B pages

 A 4-entry TLB that is 2-way set associative with LRU replacement

 A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

(A) The individual bits of a virtual address are shown below. For the following fields, indicate the

highest and lowest bit (these could be the same) that constitute that field: [8 pt]

VPO: __6__ to __0__ TLBI: __7__ to __7__

VPN: __15_ to __7__ TLBT: __15_ to __8__

VPO contains the logଶ 128 ൌ 7 least significant bits, with the rest making up the VPN. The

VPN is split into TLBT and TLBI: TLB has two sets so logଶ 2 ൌ 1 TLBI bit.

(B) Name three separate benefits of using virtual memory (instead of physical addressing): [6 pt]

Possible answers:
 Simplifies memory management for programmers (each process gets its own virtual

address space).
 Enforces protection and sharing between processes.
 Adds disk to the memory hierarchy (treats physical memory as a cache for disk).
 Gives each process the illusion of more memory than physical memory.

(C) If the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed), give example

addresses that will fulfill the following scenarios: [6 pt]

Find the desired entry in the TLB, then use the set

number (0 or 1) and stored TLBT to reconstruct the

desired VPN. Any VPO within this page will access

that TLB entry.

A write address that causes a TLB Hit and segmentation fault:
Want TLB entry with V=1, W=0 → Set 0, TLBT 0x70.

0x7000-0x707F

A value in %rip that causes a TLB Hit and no exception:
Want TLB entry with V=1, X=1 → Set 1, TLBT 0x04.

0x0480-0x04FF

TLBT PPN Valid R W X

0x70 0x03 1 1 0 0

0x72 0x1D 0 1 0 0

0x04 0x14 1 1 1 1

0x71 0x02 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6

Question 5: Memory Allocation [16 pts]

(A) Below is the current state of the heap after the following sequence of allocations and frees:

A allocated, B allocated, C allocated, B freed, D allocated

Start End

A A A C D D

Which allocation strategy was used? [4 pt]

next-fit

D was allocated after C instead of after A, so can’t be first-fit. Best-fit also would have put D

after A to remove external fragmentation.

(B) We are designing a dynamic memory allocator for a 64-bit computer with 8-byte boundary

tags and alignment size of 16 bytes using an explicit free list. Assume a footer is always

used. Answer the following questions: [6 pt]

Maximum tags we can fit into the header (not counting size): __4___ tags

Minimum block size: __32__ bytes

Minimal amount of internal fragmentation in block
allocated by malloc(7) request: __25__ bytes

 With 16-byte alignment, lowest 4 bits are guaranteed to be zeros.

 Explicit free list has minimum size that includes header, two pointers, and footer. We are

told boundary tags (header, footer) are 8 bytes each and pointers are 8 bytes in a 64-bit

machine.  Everything but the payload counts as internal fragmentation, so 32 – 7 = 25.

(C) Consider the C code shown here. Assume that

the malloc call succeeds and that foo and

str are stored in memory (not registers). In

the following groups of expressions, circle the

one whose returned value (assume just before

return 0) is the lowest/smallest. [6 pt]

Group 1: &foo &str ZERO

Group 2: &foo &main &ZERO

Group 3: foo str &ZERO

#include <stdlib.h>
int ZERO = 0;

int main(int argc, char *argv[]) {
 char *str = "cse351";
 int *foo = malloc(8);
 return 0;
}

6) &foo/&str (Stack)

5) foo (Heap)

4) &ZERO (Static Data)

3) str (Literals)

2) &main (Code)

1) ZERO (0)

SID: ____________

7

Question 6: C and Java [6 pts]

All of the low-level concepts like data representation, memory management, and compilation that we

illustrated in this class using C apply in one way or another to all higher-level languages because at the

end of the day, it’s just a CPU executing machine instructions! We briefly showed some possible Java

implementation details.

Use the word bank below to write in the 351 concept that is most similar to the following Java

concepts discussed in lecture:

Java Concept Similar 351 Concept

Reference _pointer________________________

Object _struct_________________________

Arrays store their own length _boundary tag___________________

Virtual method table (vtable) _jump table_____________________

Word Bank:

boundary tag buffer overflow casting exception

free list jump table malloc pointer

sign extension stack overflow struct typedef

