
CSE351 Spring 2018, Midterm Exam
April 27, 2018

Please do not turn the page until 11:30.

Last Name:

First Name:

Student ID Number:

Name of person to your left:

Name of person to your right:

Signature indicating: All work is my own. I had
no prior knowledge of the exam contents nor will I
share contents with others in CSE351 who haven’t
taken it yet. Violation of these terms could result
in a failing grade.

Rules:

• The exam is closed-book, closed-note, etc.

• But it contains two useful reference pages at the end that were also posted in advance. Please remove
this last piece of paper and do not turn it in.

• Please stop promptly at 12:20.

• There are 100 points, distributed unevenly among 6 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (18 points) (32-Bit Integers and Bit Operations)

(a) In hex notation, write +30 (base-10) as a 32-bit twos-complement number.

(b) In hex notation, write -30 (base-10) as a 32-bit twos-complement number.

(c) In hex notation, write the most-positive 32-bit twos-complement number.

(d) In hex notation, write the most-negative 32-bit twos-complement number.

Now suppose x is a C int and a signed 32-bit twos-complement number. For each of the following C
expressions answer:

• always zero if the expression evaluates to 0 for every value of x

• sometimes zero if the expression evaluates to 0 for some values of x but not all values of x

• never zero if the expression evaluates to 0 for no values of x

(e) (~x) | x

(f) (x << 1) & !!x

(g) (x & 0x00FF) ^ (x & 0xFF00)

(h) x & (x << 1)

(i) ~x + x + 1

Solution:

(a) 0x1E

(b) 0xFFFFFFE2

(c) 0x7FFFFFFF

(d) 0x80000000

(e) never zero [will always be all 1 bits, i.e., -1]

(f) always zero [x << 1 always has a 0 in the low-bit and !!x always has 0s in all but the low-bit]

(g) sometimes zero [equivalent to x & 0xFFFF]

(h) sometimes zero [zero if and only if input x does not have two consecutive 1 bits not including the
left-most bit]

(i) always zero [This is equivalent to x - x in twos-complement]

Name:

2. (18 points) (Pointers, Arrays, and C) For this problem assume:

• int is 4 bytes

• char is 1 byte

• machine is little-endian

• The array a begins at address 0x100.

Throughout this problem, if any byte of memory holds 0, you can leave it blank — this saves you some
writing if you wish.

Consider this C code, which does nothing useful:

int a[6];

for(int i=0; i < 6; i++) {

a[i] = i;

}

// part a

int * ip = a;

for(int i=0; i < 6; i++) {

*ip = *ip + 2;

ip++;

}

// part b

char * cp = (char *) a;

for(int i=0; i < 6; i++) {

*cp = *cp + 2;

cp++;

}

// part c

a[0] = a[0] + a[1] + a[2];

// part d

(a) What is the value of each byte of a when control reaches the line // part a? Enter a hex value
in each (non-zero) square below — you don’t need to write 0x.

(b) What is the value of each byte of a when control reaches the line // part b? Enter a hex value
in each (non-zero) square below — you don’t need to write 0x.

(c) What is the value of each byte of a when control reaches the line // part c? Enter a hex value
in each (non-zero) square below — you don’t need to write 0x.

(d) What is the value of each byte of a when control reaches the line // part d? Enter a hex value
in each (non-zero) square below — you don’t need to write 0x.

Solution:

(a) 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

(b) 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0

(c) 4 2 2 2 5 2 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0

(d) D 4 2 2 5 2 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0

Name:

3. (17 points) (Floating-Point Numbers)

Throughout this problem, we assume single-precision (i.e., 32-bit) IEEE-754 floating-point numbers.

(a) Consider the decimal number 10.75. Give the IEEE-754 representation of this number filling in
the diagram below. Hint: Remember bias and the implicit bit. Consider explaining your work
for potential partial credit but explanation is not required.

(b) Consider the range of numbers between 2.0 and 12.0.

i. What is the smallest gap between any two representable numbers in this range? (You can
give your answer in the form ab. For example, 3−5 would be in this form.)

ii. What is the largest gap between any two representable numbers in this range? (Again you
can give your answer in the form ab.)

iii. If x and y are two representable numbers in this range and we subtract them, will we get
rounding error? Answer yes if there will be rounding error for all such x and y, maybe if it
depends on x and y, and no if rounding error is impossible.

iv. Repeat the previous rounding-error question but assume x and y are two representable num-
bers in the range between 10.0 and 12.0.

(c) Consider this C code:

void floaty_mcfloatface(float x) {

float inf = 3.0 / 0.0; // positive infinity

while(x < inf) {

x += 1.0;

}

}

If we call this function with a “normal” floating-point number for x (ignore infinities, NaN, etc.),
will it terminate (“yes” for always, “maybe” for depends on x, “no” for never)? Explain your
answer in approximately 1–2 English sentences.

Solution:

(a) 0 10000010 01011000000000000000000 (sign bit of 0, then exponent of 3 which means 130 biased,
which is 10000010, then mantissa of 1.01011 but we do not represent the implicit bit.

(b) i. 2−22 (gap between all numbers in range 2.0 to 4.0)

ii. expected answer: 2−20 (gap between all numbers in range 8.0 to 16.0) because we meant
between any two consecutive representable numbers, but the English is definitely vague, so
we accepted 10 as a correct answer (the gap between 2.0 and 12.0).

iii. maybe

iv. no

(c) No, this function will never terminate unless called with positive infinity or NaN. For normal
numbers, x will keep holding larger and larger values until the exponent is high enough that
adding 1.0 does not increase the value of x due to rounding, after which point x never changes
and the loop continues forever.

Name:

4. (15 points) (x86-64 Assembly) This problem considers this assembly implementation of a C function
of the from long mystery(long x) { ... }

mystery:

movq $0, %rax

testq %rdi, %rdi

jle .L2

.L1:

addq %rdi, %rdi

addq $1, %rax

testq %rdi, %rdi

jg .L1

.L2:

ret

In parts (a)-(c) we ask you to modify the assembly code in ways that have no effect on the answers it
produces, i.e., it should perform the same overall computation after any of your changes.

(a) Give a use of a cmpq instruction that could be used instead of either of the testq instructions.

(b) Give a use of a shlq instruction could be used instead of one of the addq instructions and indicate
which instruction it is replacing.

(c) Suppose we replace the jle .L2 with jg .L1. Insert an additional instruction to complete this
change correctly: indicate what instruction you are adding and where.

Now we ask about what mystery is actually computing.

(d) Complete this description of what mystery computes with 1–2 English sentences: “It takes the
number in %rdi and returns...”.

(e) What is the largest number mystery could possibly return? Answer in base-10.

Solution:

(a) cmpq $0, %rdi

(b) shlq $1, %rdi for the first addq instruction

(c) Intended answer: ret or jmp .L2 needs to be added after this first jump, i.e., immediately before
.L1. But it also works to put [back] jle .L2 either before or after the .L1 or even before the
jg .L1, so that also receives full credit.

(d) It takes the number in %rdi and returns the number of times it needs to be doubled before the
repeated doubling produces a non-positive number. (If the original number was positive, this
will be due to overflow.) An alternate description is it returns 63 minus the bit position of the
left-most 1-bit in %rdi where the least-significant bit is position 0 and returning 0 if there is no
1-bit.

(e) 63

Name:

5. (25 points) (Assembly, Procedures, Stacks) This problem considers an assembly implementation of
these two C functions:

long f(long s) {

long y = s;

g(&y,3);

return y;

}

void g(long * p, long i) {

if(i==0)

return;

*p += i;

g(p,i-1);

*p += i;

}

(a) What does f(7) return?

(b) Fill in the blanks to complete these implementations of f and g in assembly. Note some blanks give
the instruction but not the operand(s) and others you choose both instruction and operand(s).

f:

pushq %rdi

movq _______, %rdi

movq _______, _______

call g

ret

g:

testq %rsi, %rsi

jnz .L5

ret

.L5:

addq %rsi, (%rdi)

pushq %rdi

pushq %rsi

subq $1, %rsi

call g

addq %rsi, _________

ret

(c) Suppose we call f(7) and immediately before the first instruction of f is executed, %rsp contains
0xFFFF0000. Fill in this table to give the contents of registers immediately before the first
instruction of g is executed. Use hex. (Note 0xFFFF0000 is actually too small a 64-bit address to
be realistic, but it works fine for an exam problem.)

%rdi %rsi %rsp
First call to g

Second call to g

Third call to g

Fourth call to g

(d) Does g “do anything” to save-and-restore any caller-save registers? (yes/no without explanation)

(e) Does g “do anything” to save-and-restore any callee-save registers? (yes/no without explanation)

(f) Does g “follow the rules” for the x86-64/Linux calling convention? (yes/no without explanation)

Solution:

(a) 19

(b)
f:

pushq %rdi

movq %rsp, %rdi

movq $3, %rsi

call g

popq %rax

ret

g:

testq %rsi, %rsi

jnz .L5

ret

.L5:

addq %rsi, (%rdi)

pushq %rdi

pushq %rsi

subq $1, %rsi

call g

popq %rsi

popq %rdi # can be another caller-save register

but same register must be on next line

addq %rsi, (%rdi)

ret

(c)

%rdi %rsi %rsp
First call to g 0xFFFEFFF8 0x3 0xFFFEFFF0

Second call to g 0xFFFEFFF8 0x2 0xFFFEFFD8

Third call to g 0xFFFEFFF8 0x1 0xFFFEFFC0

Fourth call to g 0xFFFEFFF8 0x0 0xFFFEFFA8

(d) Yes

(e) No

(f) Yes (The previous “no” is not a problem because it does not use any callee-save registers, so
they’re implicitly preserved.)

Name:

6. (7 points) (Instruction-Set Architecture Design) Suppose we decide to change x86-64 to have 100
registers instead of 16. Give one-word answers to the following questions.

(a) Would this change make it harder or easier to implement hardware that executes instructions as
quickly?

(b) Would this change make it harder or easier for software to use less stack space?

(c) Would you expect a revised calling convention to have more caller-save registers or fewer caller-
save registers?

(d) Would you expect a revised calling convention to have more callee-save registers or fewer callee-
save registers?

(e) Would it be possible to make this change in a way that existing x86-64 executables could still run
without modifying them (yes or no)?

Solution:

(a) harder

(b) easier

(c) more

(d) more

(e) yes

This page intentionally blank. You can use it if you need more room than you have on another page, but
please indicate on the other page to look here! Write, “see extra page!”

