

University of Washington – Computer Science & Engineering

Autumn 2018 Instructor: Justin Hsia 2018-10-29

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Samantha Student
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 5:10.
Instructions

 This exam contains 5 pages, including this cover page. Show scratch work for partial

credit, but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 70 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 20 20 12 24 24 100

2

Question 1: Number Representation [20 pts]

(A) What is the value of the signed char 0b 1000 0100 in decimal? [2 pt]

-128+4 = -124

(B) If a = 0x2C, complete the bitwise C statement so that b = 0x1F. [4 pt]

 0b 0010 1100
^ 0b 0011 0011

b = a ^ 0x33

 0b 0001 1111

(C) Find the smallest 8-bit numeral c (answer in hex) such that c + 0x71 causes signed

overflow, but NOT unsigned overflow in 8 bits. [4 pt]
For signed overflow, need ሺሻ ሺሻ ൌ ሺെሻ.
For no unsigned overflow, need no carryout from MSB.

0x 0F

 The first ሺെሻ encoding we can reach from 0x71 is 0x80.
 0x80 – 0x71 = 0xF.

For the rest of this problem we are working with a floating point representation that follows the

same conventions as IEEE 754 except using 7 bits split into the following fields:

Sign (1) Exponent (3) Mantissa (3)

(D) What is the magnitude of the bias of this new representation? [2 pt]

23-1-1 = 3

(E) What is the decimal value encoded by 0b1110101 in this representation? [4 pt]

S = 1, E = 0b110 = 6, M = 0b101
-13

 Value = ሺെ1ሻଵ ൈ 1.101ଶ ൈ 2ିଷ ൌ െ1.101ଶ ൈ 2ଷ ൌ െ1101ଶ ൌ െ13

(F) What value will be read after we try to store -18 in this representation? (Circle one) [4 pt]

–16 –NaN –∞ –18

െ18 ൌ െሺ16 2ሻ ൌ െሺ2ସ 2ଵሻ ൌ െ1.001ଶ ൈ 2ସ.
The largest normalized exponent we can encode is 0b110 → Exp = 3, so this causes

overflow, resulting in െ∞ being stored (as 0b1111000).

SID: ____________

3

Question 2: Pointers & Memory [20 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of

memory (values in hex) is shown below:

char* charP = 0x1B
short* shortP = 0xE

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 AC AB 03 01 BA 5E BA 11

0x08 5E 00 68 0C BE A7 CE FA

0x10 1D B0 99 DE AD 60 BB 40

0x18 14 1D EC AF EE FF CO 70

0x20 BA B0 41 20 80 DD BE EF

(A) Using the values shown above, complete the C code below to fulfill the behaviors described

in the comments using pointer arithmetic. [8 pt]

v1: Byte 0xEC is at address 0x1A. 0x1A – charP = -1.

v2: No dereferencing; just pointer arithmetic (scaled by sizeof(int) = 4).

shortP=0xE=14. To get to 0x1A=26, need to add 12 (3 by pointer arithmetic).

(B) What are the values (in hex) stored in each register shown after the following x86-64

instructions are executed? We are still using the state of memory shown above.

Remember to use the appropriate bit widths. [12 pt]

 Register Data (hex)

 %rdi 0x 0000 0000 0000 000C

 %rsi 0x 0000 0000 0000 0008

leaw (,%rsi,2), %r15w %r15w 0x 0010

movswl (%rdi,%rsi), %ebp %rbp 0x 0000 0000 0000 60AD

addb 5(%rdi), %dil %dil 0x BC

leaw calculates address 0x8 ൈ 2. Can use left shifting to do this multiplication.

movswl instruction pulls two bytes starting at memory address 0xC+0x8 = 0x14, which

is 0x60AD (remember little endian!). Then sign-extend out to 32 bits, with the

upper 4 bytes being automatically zeroed out.

addb pulls the byte from memory at address 0xC+5=0x11 (0xB0) and adds it to the

lowest byte of %rdi (0x0C).

char v1 = charP[__-1___]; // set v1 = 0xEC

int* v2 = ((int*)shortP) + ___3___; // set v2 = 0x1A

4

Question 3: Design Questions [12 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

(A) What values can S take in an x86-64 memory operand? Briefly describe why these choices

are useful/important. [4 pt] – a memory operand is of the form D(Rb,Ri,S).

Values: 1, 2, 4, 8

Importance: These values represent the different scaling factors used in pointer
arithmetic based on the data type sizes.

(B) Until very recently (Java 8/9), Java did not support unsigned integer data types. Name

one advantage and one disadvantage to this decision to omit unsigned. [4 pt]

Advantage: Some possible answers:
 Less confusing/more consistent arithmetic interpretations for the programmer.
 Fewer cases of implicit casting.
 Fewer data types to worry about.

Disadvantage: Some possible answers:
 Need to use larger data widths for numbers in the range (TMax, UMax] for a

given width.
 More difficult to do unsigned comparisons.
 More difficult to do zero-extension.

(C) Condition codes are part of the processor/CPU state. Would our instruction set

architecture (ISA) still work if we got rid of the condition codes? Briefly explain. [4 pt]

Circle one: Yes No

Explanation: Our jump and set instructions, which rely on the values of the condition
codes, would no longer work. Without jump instructions, we couldn’t implement most
of our program’s control flow.

SID: ____________

5

Question 4: C & Assembly [24 pts]

Answer the questions below about the following x86-64 assembly function:

(A) What variable type would %rdi be in the corresponding C program? [4 pt]

Line 4: we compute array index address %rcx from %rdi with a
scale factor of 8 (long). Line 5: address is dereferenced (pointer).

____long *____

(B) What variable type would the 2nd argument be in the corresponding C program? [4 pt]

Line 10: we use a movzwl on %si. unsigned short

(C) This function uses a for loop. Fill in the corresponding parts below, using register names

as variable names (no declarations necessary). None should be blank. [8 pt]

eax < si .
for (__eax = 0___ ; __eax < edx_ ; __eax += 2__)

Init is from Line 1, Test is from Lines 2-4, Update is from Line 9.

Both %si (Line 10) and %edx (Line 11) were accepted in the Test comparison.

(D) If we call this function with the value 1 as the second argument, how many jump

instructions are executed (taken or untaken) in this function? [4 pt]

Line 2 once (unconditional), Line 12 twice (taken when
%eax = 0, then untaken when %eax = 2).

3

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [4 pt]

It negates (–x = (x ^ -1) + 1) every even index of an array (i.e. every other starting
with index 0).

mystery:
 movl $0, %eax # Line 1
 jmp .L2 # Line 2
.L3: movslq %eax, %rdx # Line 3
 leaq (%rdi,%rdx,8), %rcx # Line 4
 movq (%rcx), %rdx # Line 5
 xorq $-1, %rdx # Line 6
 addq $1, %rdx # Line 7
 movq %rdx, (%rcx) # Line 8
 addl $2, %eax # Line 9
.L2: movzwl %si, %edx # Line 10
 cmpl %eax, %edx # Line 11
 jg .L3 # Line 12
 retq # Line 13

6

Question 5: Procedures & The Stack [24 pts]

The recursive function sum_r() calculates the sum of the elements of an int array and its

x86-64 disassembly is shown below:

(A) The addresses shown in the disassembly are all part of which section of memory? [2 pt]

Text or .text also accepted. Instructions/Code

(B) Disassembly (as shown here) is different from assembly (as would be found in an assembly

file). Name two major differences: [4 pt]

Differences: Some possible answers include:
 No machine code (middle column) would be shown in the assembly (i.e. the

code hasn’t been assembled yet).
 Finalized addresses would not be found in the assembly (left column).
 All labels would still be symbolic/named in the assembly instructions (e.g. jne,

jmp, callq).

int sum_r(int *ar, unsigned int len) {
 if (!len) {
 return 0;
 else
 return *ar + sum_r(ar+1,len-1);
}

0000000000400507 <sum_r>:

 400507: 41 53 pushq %r12

 400509: 85 f6 testl %esi,%esi

 40050b: 75 07 jne 400514 <sum_r+0xd>

 40050d: b8 00 00 00 00 movl $0x0,%eax

 400512: eb 12 jmp 400526 <sum_r+0x1f>

 400514: 44 8b 1f movl (%rdi),%r12d

 400517: 83 ee 01 subl $0x1,%esi

 40051a: 48 83 c7 04 addq $0x4,%rdi

 40051e: e8 e4 ff ff ff callq 400507 <sum_r>

 400523: 44 01 d8 addl %r12d,%eax

 400526: 41 5b popq %r12

 400528: c3 retq

SID: ____________

7

(C) What is the return address to sum_r that gets stored on the stack? Answer in hex. [2 pt]

The address of the instruction after call. 0x 400523

(D) What value is saved across each recursive call? Answer using a C expression. [2 pt]

The instruction at address 0x400514 dereferences %rdi and
stores the value in %r12d.

*ar

(E) Assume main calls sum_r(ar,3) with int ar[] = {3,5,1}. Fill in the snapshot of

memory below the top of the stack in hex as this call to sum_r returns to main. For

unknown words, write “0x unknown”. [6 pt]

0x7fffffffde20 <ret addr to main>
sum_r(ar,3)

0x7fffffffde18 <original r12>

0x7fffffffde10 0x 400523 <ret addr>
sum_r(ar+1,2)

0x7fffffffde08 0x 3 <*ar>

0x7fffffffde00 0x 400523 <ret addr>
sum_r(ar+2,1)

0x7fffffffddf8 0x 5 <*ar>

0x7fffffffddf0 0x 400523 <ret addr>
sum_r(ar+3,0)

0x7fffffffdde8 0x 1 <*ar>

The base case DOES still push %r12 onto the stack.

(F) Assembly code sometimes uses relative addressing. The last 4 bytes of the callq

instruction encode an integer (in little endian). This value represents the difference

between which two addresses? Hint: both addresses are important to this callq. [4 pt]

0xffffffe4 = -(0x1b + 1) = -28 value (decimal): -28

This corresponds to the address we jump to. address 1: 0x 400507

This corresponds to the return address. address 2: 0x 400523

(G) What could we change in the assembly code of this function to reduce the amount of

Stack memory used while keeping it recursive and functioning properly? [4 pt]

The issue with recursive functions is that no matter what kind of register you use to
save a value (caller-saved or callee-saved), the recursive call will overwrite that value
because it’s an identical function! So we actually can’t avoid pushing something to the
stack without making the function iterative. So any potential saving of Stack space will
come from the base case. Keep reading for two possible solution types:

8

Callee-saved: %r12 is a callee-saved register. This means that its old value just
needs to be saved before we overwrite its value; it does not need to be saved at the very
top of sum_r.

1) Move the pushq instruction into the recursive case (below the jmp instruction).

2) Either make the jmp go to address 0x400528 instead OR
move the movl $0,%eax above the jne and change the jne to je 0x400528.

Caller-saved: The value we really care about saving across the recursive call (ar or
*ar), already starts in a caller-saved register in %rdi! This value must then be saved
before we make a recursive call to sum_r and restored once it returns:

1) Convert the pushq %r12 to pushq %rdi and move it down to replace the
movl (%rdi),%r12d instruction.

2) Convert the popq %r12 to popq %rdi and move it right after/below the
callq.

3) Convert the addl %r12d,%eax to addl (%rdi),%eax.

