Name of person to your Left | Right

All work is my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

University of Washington — Computer Science & Engineering

Autumn 2018 Instructor: Justin Hsia 2018-12-12
Last Name:
First Name:

Student ID Number:

could result in a failing grade. (please sign)

Do not turn the page until 12:30.

Instructions

This exam contains 14 pages, including this cover page. Show scratch work for partial credit,
but put your final answers in the boxes and blanks provided.

The last page is a reference sheet. Please detach it from the rest of the exam.

The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed
two pages (US letter, double-sided) of handwritten notes.

Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

You have 110 minutes to complete this exam.

Advice

Read questions carefully before starting. Skip questions that are taking a long time.
Read all questions first and start where you feel the most confident.

Relax. You are here to learn.

Question M1 M2 | M3 | M4 | M5|| F6 | F7 | F8 | F9 | F10|| Total

Possible Points | 16 4 16 | 22 16 10 | 20 18 18 18 158

Question M1: Numbers [16 pts|

(A) Briefly explain why we know that there may be data loss casting from int to float, but there
won’t be casting from int to double. [4 pt|

Explanation:

127 104 .
-2

(B) What value will be read after we try to store —2 in a float? (Circle one) [4 pt]

_ol27 _NaN oo _9127_5104

(C) Complete the following C function that returns whether or not a pointer p is aligned for data type
size K. Hint: be careful with data types! [4 pt]

int aligned(void* p, int K) {

return ;

(D) Take the 32-bit numeral 0x50000000. Circle the number representation below that has the

most positive value for this numeral. [4 pt]

Two’s AND

Floating Point Two’s Complement Unsigned .
Unsigned

Question M2: Design Question [4 pts]

(A) If the Stack grew upwards (e.g. we switched the positions of the Stack and Heap), which assembly

instructions would need their behaviors changed? Name two and briefly describe the changes.

Instruction 1:

Change:

Instruction 2:

Change:

SID:

Question M3: Pointers & Memory [16 pts|

We are using a 64-bit x86-64 machine (little endian). Below is the sum r function disassembly,

showing where the code is stored in memory. Hint: read the questions before the assembly!

0000000000400507 <sum r>:
400507: 41 53 pushg %rl2
400509: 85 f6 testl S%esi, %esi
40050b: 75 07 jne 400514 <sum_ r+0xd>
40050d: b8 00 00 00 00 movl $0x0, %eax
400512: eb 12 Jmp 400526 <sum_ r+0x1f>
400514: 44 8b 1f movl ($rdi), srl2d
400517: 83 ee 01 subl $0x1, $esi
40051a: 48 83 c7 04 addg S0x4, $rdi
40051e: e8 ed ff ff ff callg 400507 <sum r>
400523: 44 01 d8 addil %rlzd, seax
400526: 41 5b Popra srlz
400528: c3 retq

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are

executed? Use the appropriate bit widths. [8 pt]

Register Value (hex)

Frdi Ox 0000 0000 0040 0507

Frsi Ox 0000 0000 0000 0003

leal 9 (%rdi), %eax $eax 0x
andb (%rdi, %$rsi), %sil %$sil Ox

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer
arithmetic. Let short* shortP = 0x400513. [8 pt|

0x00B8

short vl shortP]] 8 // set vi

void* v2 = (woid*) ((*)shortP + 5); // set v2 0x400527

Question M4: Procedures & The Stack [22 pts|

The function sum_r2 calculates the sum of the elements in a long array (similar to sum_r from the

Midterm, but with extra, useless parameters). The function and its disassembly are shown below:

int sum r2(long* p, long len, long a, long b, long c, long d) {
if (len > 0)
return *p + sum r2(p+l, len-1, a, b, ¢, d);
return 0;

0000000000400507 <sum_ r2>:

400507: 48 85 fo test %rsi,%rsi
40050a: 7f 06 jg 400512 <sum_ r2+0xb>
40050c: b8 00 00 00 00 mov $0x0, $eax
400511: c3 retq

400512: 57 push Srdi

400513: 48 83 ee 01 sub $0x1,%rsi
400517: 48 83 c7 08 add $0x8, %rdi
40051b: e8 e7 ff ff ff callg 400507 <sum r2>
400520: 5f pPop Srdi

400521 : 03 07 add (%$rdi) , Seax
400523: c3 retq

Machine code is first generated by which of the following? |[2 pt]

Compiler Assembler Linker Loader

Which of the following changes the value of the program counter? |2 pt|

Compiler Assembler Linker Loader

Let long ar[] = (1,2,3,4}. When sum r2(ar,3,0,0,0,0) is called, fill in the following
quantities: [6 pt]

Size of each recursive stack frame: bytes

Number of sum_r2 stack frames created:

Value returned:

(D)

SID:

We now generate the function sum_r3 by adding another useless parameter long e to the end
of the parameter list and changing the recursive call to sum_r3(p+1,len-1,a,b,c,d,e).
Briefly describe how a stack frame of sum r3 will differ from a stack frame of sum r2 — what

gets added or removed and where in the stack frame? [4 pt|

Description:

Assume main calls sum _r3(ar,2,0,0,0,0,0x£f) — the NEW function with the extra
parameter — with long ar[] = {4, 2} and &ar = 0x7£..db00. Fill in the snapshot of the
stack below (in hex) as this call returns to main. Although the assembly code will change, use

the addresses shown in sum_r2 where applicable. For unknown words, write “0x unknown”.
8 pt]

Ox7fffffffdae8 <ret addr to main>

Ox7fffffffdael | Ox

Ox7fffffffdad8 | Ox

Ox7fffffffdad0 | Ox

Ox7fffffffdac8 | Ox

Ox7fffffffdacO | Ox

Ox7fffffffdab8 | O0x

Ox7fffffffdab0 | Ox

Ox7fffffffdaad | Ox

Question M5: C & Assembly [16 pts]

Answer the questions below about the following x86-64 assembly function, which uses a struct with two
fields named one and two, declared in that order:

mystery:
movl S0, %eax # Line 1
jmp .L3 # Line 2
od2 § movq 8(%rdi), %rdi # Line 3
testqg $rdi, %rdi # Line 4
je .L4 # Line 5
o3 g movl ($rdi), %$edx # Line 6
cmpl %eax, %edx # Line 7
jle .12 # Line 8
movl $edx, %eax # Line 9
jmp L2 # Line 10
.L4: retq # Line 11

(A) %rdi contains a pointer to an instance of the struct. What variable type is field one? [2 pt]

(B) How many parameters does this function have? [1 pt|

(C) Give a value of the first argument to mystery that will cause a segmentation fault. [3 pt]

causes a segfault on Line

(D) Convert lines 6, 7, 8, and 9 into C code. Use variable names that correspond to the register

names (e.g. al for the value in $al). Remember that the struct fields are named one and two.
[6 pt]

if |) A .

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [4 pt]

SID:

Question F6: Structs [10 pts]

For this question, assume a 64-bit machine and the following C struct definition.

typedef struct {
short age; // age, in years
char name[l6]; // name, as a C string
int height; // height, in cm
long weight; // weight, in kg
} person;

(A) How much memory, in bytes, does an instance of person use? How many of those bytes are

internal fragmentation and external fragmentation? [6 pt]

sizeof (person) Internal External

(B) Instead of storing name as a 16-character array, we could use a character pointer instead. Briefly

describe an advantage and disadvantage to this new implementation. [4 pt]

Advantage:

Disadvantage:

Question F7: Caching [20 pts]

We have 1 MiB of RAM and a 256-byte L1 data cache that is direct-mapped with 16-byte blocks and

random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: |3 pt]

Tag bits Index bits | Offset bits

(B) The code snippet below accesses an array of £loats. Assuming i and temp are stored in
registers, the Miss Rate is 100% if the cache starts cold. What is the memory access pattern

(read or write to which elements/addresses) and why do we see this miss rate? [6 pt]

#define N 128
float data[N]; // &data = 0x08000 (physical addr)
for (1 = 0; 1 < N/2; 1 += 1) {
temp = datalil;
data[i] = datal[i+N/2];
data[i+N/2] = temp;
}

Per Iteration: Access 1: : Access 2: : Access 3: : Access 4:
1 1 1
(circle) — R / W to ! R/ W to ! R/ W to ! R /W to
(fill in) - datal] | datal] | datal] | datal]
Miss Rate:
(C) For each of the proposed (independent) changes, draw 4 for “increased”, — for “no change”, or

J for “decreased” to indicate the effect on the miss rate from Part B for the code above: [8 pt]

Use double instead Double the cache size

Increase the associativity No-write allocate

(D) Assume it takes 120 ns to get a block of data from main memory. If our L1 data cache has a hit
time of 3 ns and a miss rate of 5%, circle which of the following improvements would result in the

best average memory access time (AMAT). [3 pt]

2-ns hit time 4% miss rate 100-ns miss penalty

SID:

Question F8: Processes [18 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: |6 pt|

void concurrent (void) {
int x = 2, status; (1)
if (fork()) {
X *= 2; (2)
} else ({
=T (3)
if (fork()) {
x += 1;
wait (&status) ;
} else {
X -= 2;
}
printf ("%d", x) ;
exit (0);
}

(B) For each of the following types of synchronous exceptions, indicate whether they are intentional
(I) or unintentional (U) AND whether they are recoverable (R), maybe recoverable (M) or not
recoverable (N). [6 pt]

1/u R/M/N

Trap
Fault

Abort

(C) For the following scenarios, circle the outcome when the child process executes exit (0). [6 pt]

Scenario: Outcome for child:
Parent is still executing. Alive Reaped Zombie
Parent has called wait (). Alive Reaped Zombie

Parent has terminated. Alive Reaped Zombie

Question F9: Virtual Memory [18 pts|

Our system has the following setup:
e 18-bit virtual addresses and 32 KiB of RAM with 1-KiB pages
o A 4-entry direct-mapped TLB with LRU replacement
e A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

(A) Compute the following values: [8 pt]
PPO width — # of bits per PTE

VPN width —— # of TLB sets

(B) In a machine that uses virtual memory, what is the relative usage of the following that you would

expect? Briefly defend your choice. [4 pt]

Accessed more: (circle) TLB Page Table

Explanation:

(C) Assume the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed) when the
following loop is executed and that p is stored in a register. Which “event” occurs first and on

which value of p? [6 pt]

short *p = 0x1F400; TLBT PPN (Valid| R |W| X
while (1) ({ 0x04 |O0x1D| 1 |1]0]|1
=0 0x1F |0x0c| 1 |[1|1]0
p += 8;
) Ox1F | 0x03 1 1{1(0
0x06 | 0x14 1 11110
Cirel] Page Protection TLB
~lfcle one: Fault Fault Replacement
p = 0x

10

SID:

Question F10: Memory Allocation [18 pts|

(A)

(B)

In the following code, briefly identify the TWO memory errors. They can be fixed by changing
ONE line of code. [6 pt]

int N = 64;

double *func (double A[][], double x[]) {
double *z = (double *) malloc (N * sizeof (float))
for (int 1 = 0; 1 < N; i++) {
for (int j = J < N; j++) {
z[1i] = A[1] + z[i] * x[J];
}
}

return z;

Error 1:

Error 2:

Line of code with fixes:

We are using a dynamic memory allocator on a 64-bit machine with an explicit free list,

4-byte boundary tags, and 16-byte alignment. Assume that a footer is always used. [6 pt]

internal
fragmentation
Request return value block addr block size in this block
p = malloc(12); 0x610 0x bytes bytes

Consider the C code shown here. Assume that

the malloc call succeeds and that all variables #include <stdlib.h>
int ZERO = O;
char* str = "cse351";

are stored in memory (not registers). In the
following groups of expressions, circle the one
whose returned value (assume just before PS W (e guagley @R besgwil]) |
int *foo = malloc(888);

int bar = 351;

free(foo);

return O;

return 0) is the lowest/smallest. [6 pt]

Group 1: &bar &foo foo
Group 2: &foo main str
Group 3: bar &str &ZERO

11

This page purposely left blank

12

CSE 351 Reference Sheet (Final)

Binary Decimal Hex 20 | 21 | 22| 23 [24 25 26 27 28 29 210
0000 0 0
0001 1 1 1 2 4 | 8 |16 | 32 | 64 | 128 | 256 | 512 | 1024
0010 2 2 SISize | Prefix | Symbol | IEC Size | Prefix | Symbol
0011 3 3 103 Kilo- K 210 Kibi- Ki
0100 4 4 106 Mega- M 220 Mebi- Mi
0101 5 5 10° Giga- G 230 Gibi- Gi
0110 6 6 1012 Tera- T 240 Tebi- Ti
0111 7 7 1015 Peta- P 250 Pebi- Pi
1000 8 8 1018 Exa- E 260 Exbi- Ei
1001 9 9 1021 7 etta- 7 270 Zebi- Zi
1010 10 A 102 | Yot Y 280 Yobi- Yi
1011 11 B
1100 12 C |IEEE 754 FLOATING-POINT
1101 13 D STANDARD IEEE 754 Symbols
1110 14 E Value: 1 x Mantissa x 2&xponent E M Meaning
1111 15 F Bit fields: (-1)5x 1.M x 2(E-bias) all zeros | all zeros 0
Slzes where Sing]e; I.’recis.ion Bias= 127, all zeros | non-zero | + denorm num
Double Precision Bias = 1023. 1to MAX-1 | anything | £ norm num
C type Suffix Size IEEE Single Precision and all ones all zeros oo
char 1 Double Precision Formats: allones | non-zero NaN
3130 2322 0
short w 2 |S| E | M |
int - 4 1bit 8 bits 23 bits
63 62 5251 0
long o} 8 |S| E | v |
1 bit 11 bits 52 bits

Assembly Instructions

mov a, b
movs a, b
movz a, b
lea a, b

push src
pop dst
call <func>
ret

add a, b
sub a, b
imul a, b
and a,
sar a,
shr a,
shl a,
cmp a,
test a, b
jmp <label>
j* <label>
set* a

oo o oo

Copy from a to b.

Copy from a to b with sign extension. Needs two width specifiers.

Copy from a to b with zero extension. Needs two width specifiers.

Compute address and store in b.

Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.

Push src onto the stack and decrement stack pointer.

Pop from the stack into dst and increment stack pointer.

Push return address onto stack and jump to a procedure.

Pop return address and jump there.
Add from a to b and store in b (and sets flags).

Subtract a from b (compute b-a) and store in b (and sets flags).

Multiply a and b and store in b (and sets flags).
Bitwise AND of a and b, store in b (and sets flags).

Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

Shift value of b right (logical) by a bits, store in b (and sets flags).

Shift value of b left by a bits, store in b (and sets flags).

Compare b with a (compute b-a and set condition codes based on result).

Bitwise AND of a and b and set condition codes based on result.

Unconditional jump to address.

Conditional jump based on condition codes (more on next page).

Set byte based on condition codes.

Conditionals

Instruction (op) s, d test a, b cmp a, b
je “Equal” d (op) s == 0 b & a==20 b == a
jne “Not equal” d (op) s =0 be&al!=20 b I'=a
js “Sign” (negative) d (op) s < O b &a< 0 b-a < 0
jns (non-negative) d (op) s >= 0 b & a> 0 b-a >= 0
jg “Greater” d (op) s > O b&a> 0 b > a
jge “Greater or equal” d (op) s >= 0 b&a>2~0 b >= a
jl “Less” d (op) s < O b & a< 0 b < a
jle “Less or equal” d (op) s <= 0 b & a<=0 b <= a
ja “Above” (unsigned >) d (op) s > 0U b & a > 00U b-a > 0U
jb “Below” (unsigned <) d (op) s < 0U b & a < 0U b-a < 0U
Registers C Functions
Name of “virtual” register void*malloc (size tsize):
Lowest Lowest Lowest | | Allocate size bytes from the heap.

Name Convention 4 bytes 2 bytes byte
%rax | Returnvalue—Callersaved | %eax %ax sal void* calloc(size_tn, size tsize):
%1 bx Callee saved | Sebx ohx 2p] Allocate n*size bytes and initialize to 0.
$rcx | Argument #4 —Caller saved | %ecx %cx scl void free (void* ptr):
$rdx | Argument #3 — Caller saved | %edx dx %dl Free the memory space pointed to by ptr.
srsi | Argument #2 —Callersaved | %esi %si %sil

: : : : size_t sizeof (type):
5rdi | Argument #1- Callersaved | %edi sdi sdil Returns the size of a given type (in bytes).
Srsp Stack Pointer | %esp $sp $spl

* * .
$rbp Calleesaved | %ebp sbp sbpl | | char*gets(char*s):
Reads a line from stdin into the buffer.
sr8 Argument #5 — Caller saved | %r8d Sr8w %r8b
5r9 | Argument #6 — Caller saved | %r9d ST 9w $r9bo pid_t fork ():
$r10 Callersaved | 2r10d Sriow Sr10b Create a new child process (duplicates parent).
srll Callersaved | $rlld %rllw 5rllb pid_twait (int* status):
$rl2 Calleesaved | %rl2d %rl2w %rl2b Blocks calling process until any child process
5r13 Calleesaved | 5r13d $ri3w 3r13b | | &
srld Calleesaved | srldd %rldw %rldb || jp¢ ovecy (char* path, char* argv([]):
%rl5 Calleesaved | $r15d %rlb5w %rlbb Replace current process image with new image.
Virtual Memory Acronyms

MMU Memory Management Unit | VPO Virtual Page Offset TLBT TLBTag
VA Virtual Address PPO Physical Page Offset TLBI TLB Index
PA Physical Address PT Page Table CcT Cache Tag
VPN Virtual Page Number PTE Page Table Entry cl Cache Index
PPN Physical Page Number PTBR Page Table Base Register | CO Cache Offset

	CSE351-Au18-Final.pdf
	ref-final.pdf

