

University of Washington – Computer Science & Engineering

Autumn 2018 Instructor: Justin Hsia 2018-12-12

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 12:30.
Instructions

 This exam contains 14 pages, including this cover page. Show scratch work for partial credit,

but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed

two pages (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 110 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question M1 M2 M3 M4 M5 F6 F7 F8 F9 F10 Total

Possible Points 16 4 16 22 16 10 20 18 18 18 158

2

Question M1: Numbers [16 pts]

(A) Briefly explain why we know that there may be data loss casting from int to float, but there

won’t be casting from int to double. [4 pt]

Explanation:
An int contains 32 bits of information, which always fits into the 52-bit mantissa of a
double, but not always into the 23-bit mantissa of a float.

(B) What value will be read after we try to store –2127 – 2104 in a float? (Circle one) [4 pt]

–2127 –NaN –∞ –2127–2104

 –2127 – 2104 = –2127 ൈ 1.000000000000000000000012.

 Exp = 127 is a representable normalized exponent (E = 0b11111110)

 All of the bits following the binary point in the Mantissa fit into the M field (23 bits).

(C) Complete the following C function that returns whether or not a pointer p is aligned for data type

size K. Hint: be careful with data types! [4 pt]

int aligned(void* p, int K) {
 return !((long)p%K); // other variants accepted, e.g.
} // (long)p%K == 0
 // (long)p == (long)p/K*K
 // !((long)p & (K-1))

(D) Take the 32-bit numeral 0x50000000. Circle the number representation below that has the

most positive value for this numeral. [4 pt]

Floating Point Two’s Complement Unsigned
Two’s AND
Unsigned

float: S = 0, E = 0b1010 0000, M = 0, so +1.02ൈ233. You can recognize that this is larger

than TMax and UMax.

int/unsigned int: Positive encodings are the same for both representations. Value is

5ൈ167 = 230+228.

 Question M2: Design Question [4 pts]

(A) If the Stack grew upwards (e.g. we switched the positions of the Stack and Heap), which assembly

instructions would need their behaviors changed? Name two and briefly describe the changes.

There are 4 instructions that would need to be changed: push, pop, call, ret.

push and call would now need to increase %rsp.

pop and ret would now need to decrease %rsp.

SID: __1234567___

3

Question M3: Pointers & Memory [16 pts]

We are using a 64-bit x86-64 machine (little endian). Below is the sum_r function disassembly,

showing where the code is stored in memory. Hint: read the questions before the assembly!

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are

executed? Use the appropriate bit widths. [8 pt]

 Register Value (hex)

 %rdi 0x 0000 0000 0040 0507

 %rsi 0x 0000 0000 0000 0003

leal 9(%rdi), %eax %eax 0x 0040 0510

andb (%rdi,%rsi), %sil %sil 0x 02

leal instruction calculates the address 0x400507 + 9 = 0x400510.

andb instruction pulls the byte at memory address 0x400507+3 = 0x40050a, which is 0xf6.

and-ing this with the lowest byte of %rsi yields 0xf6 & 0x03 = 0x02.

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer

arithmetic. Let short* shortP = 0x400513. [8 pt]

0xb8 byte in sum_r is at address 0x40050d, 6 bytes = 3 shorts behind shortP.

The difference between v2 and shortP is 20 bytes. Since by pointer arithmetic we are moving 5

“things” away, shortP must be cast to a pointer to a data type of size 4 bytes.

0000000000400507 <sum_r>:

 400507: 41 53 pushq %r12

 400509: 85 f6 testl %esi,%esi

 40050b: 75 07 jne 400514 <sum_r+0xd>

 40050d: b8 00 00 00 00 movl $0x0,%eax

 400512: eb 12 jmp 400526 <sum_r+0x1f>

 400514: 44 8b 1f movl (%rdi),%r12d

 400517: 83 ee 01 subl $0x1,%esi

 40051a: 48 83 c7 04 addq $0x4,%rdi

 40051e: e8 e4 ff ff ff callq 400507 <sum_r>

 400523: 44 01 d8 addl %r12d,%eax

 400526: 41 5b popq %r12

 400528: c3 retq

short v1 = shortP[__-3__]; // set v1 = 0x00B8

void* v2 = (void*)((_int/float_*)shortP + 5); // set v2 = 0x400527

4

Question M4: Procedures & The Stack [22 pts]

The function sum_r2 calculates the sum of the elements in a long array (similar to sum_r from the

Midterm, but with extra, useless parameters). The function and its disassembly are shown below:

(A) Machine code is first generated by which of the following? [2 pt]

Compiler Assembler Linker Loader

(B) Which of the following changes the value of the program counter? [2 pt]

Compiler Assembler Linker Loader

The loader actually starts the process running, so it’s the only one that affects registers.

(C) Let long ar[] = {1,2,3,4}. When sum_r2(ar,3,0,0,0,0) is called, fill in the following

quantities: [6 pt]

Size of each recursive stack frame: ___16_ bytes

Number of sum_r2 stack frames created: 4

Value returned: 6

In the recursive case, the return address starts the stack frame and then we also push %rdi, so

that takes up 16 bytes.

sum_r2 is called with len = 3, so there are stack frames for len = 3, 2, 1, 0 (base case).

This call to sum_r2 sums the first 3 elements, so 1+2+3 = 6.

int sum_r2(long* p, long len, long a, long b, long c, long d) {
 if (len > 0)
 return *p + sum_r2(p+1, len-1, a, b, c, d);
 return 0;
}

0000000000400507 <sum_r2>:

 400507: 48 85 f6 test %rsi,%rsi

 40050a: 7f 06 jg 400512 <sum_r2+0xb>

 40050c: b8 00 00 00 00 mov $0x0,%eax

 400511: c3 retq

 400512: 57 push %rdi

 400513: 48 83 ee 01 sub $0x1,%rsi

 400517: 48 83 c7 08 add $0x8,%rdi

 40051b: e8 e7 ff ff ff callq 400507 <sum_r2>

 400520: 5f pop %rdi

 400521: 03 07 add (%rdi),%eax

 400523: c3 retq

SID: __1234567___

5

(D) We now generate the function sum_r3 by adding another useless parameter long e to the end

of the parameter list and changing the recursive call to sum_r3(p+1,len-1,a,b,c,d,e).

Briefly describe how a stack frame of sum_r3 will differ from a stack frame of sum_r2 – what

gets added or removed and where in the stack frame? [4 pt]

Description:
The 7th argument (e) spills onto the Stack in the argument build portion at the “end”
(lowest addresses) of the stack frame during a recursive call. The value of e will be
found directly above the return address that starts the next frame.

(E) Assume main calls sum_r3(ar,2,0,0,0,0,0xf) – the NEW function with the extra

parameter – with long ar[] = {4, 2} and &ar = 0x7f…db00. Fill in the snapshot of the

stack below (in hex) as this call returns to main. Although the assembly code will change, use

the addresses shown in sum_r2 where applicable. For unknown words, write “0x unknown”.

[8 pt]

0x7fffffffdae8 <ret addr to main>

sum_r3(ar,2,…,0xf) 0x7fffffffdae0 0x 7f…db00

0x7fffffffdad8 0x f

0x7fffffffdad0 0x 400520

sum_r3(ar,1,…,0xf) 0x7fffffffdac8 0x 7f…db08

0x7fffffffdac0 0x f

0x7fffffffdab8 0x 400520 sum_r3(ar,0,…,0xf)

0x7fffffffdab0 0x unknown

0x7fffffffdaa8 0x unknown

3 total stack frames of sum_r3 created: sum_r3(ar,2,…) → sum_r3(ar+1,1,…) →

sum_r3(ar+2,0,…). In the recursive case, first %rdi (holding the address of the current ar

element) is pushed onto the stack, and then the 7th argument is pushed onto the stack (the

argument build comes right above the return address). The last stack frame hits the base

condition and doesn’t push %rdi or the 7th argument onto the stack. The data below this point

is considered unknown/garbage.

6

Question M5: C & Assembly [16 pts]

Answer the questions below about the following x86-64 assembly function, which uses a struct with two
fields named one and two, declared in that order:

(A) %rdi contains a pointer to an instance of the struct. What variable type is field one? [2 pt]

In Line 6, 0(%rdi) is used in a movl instruction. ____int____

(B) How many parameters does this function have? [1 pt]

%rsi is not used and %edx/%rdx used as a temporary variable. ___1___

(C) Give a value of the first argument to mystery that will cause a segmentation fault. [3 pt]

Any low address (below Code) accepted. 0/null causes a segfault on Line __6__

(D) Convert lines 6, 7, 8, and 9 into C code. Use variable names that correspond to the register

names (e.g. al for the value in %al). Remember that the struct fields are named one and two.

[6 pt]

if (_rdi->one > eax_) { _eax = rdi->one_; }

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [4 pt]

Returns the maximum positive value in a singly-linked list.

mystery:
 movl $0, %eax # Line 1
 jmp .L3 # Line 2
.L2: movq 8(%rdi), %rdi # Line 3
 testq %rdi, %rdi # Line 4
 je .L4 # Line 5
.L3: movl (%rdi), %edx # Line 6
 cmpl %eax, %edx # Line 7
 jle .L2 # Line 8
 movl %edx, %eax # Line 9
 jmp .L2 # Line 10
.L4: retq # Line 11

SID: __1234567___

7

Question F6: Structs [10 pts]

For this question, assume a 64-bit machine and the following C struct definition.

typedef struct { K:

 short age; 2 // age, in years

 char name[16]; 1 // name, as a C string

 int height; 4 // height, in cm

 long weight; 8 // weight, in kg

} person; Kmax = 8

(A) How much memory, in bytes, does an instance of person use? How many of those bytes are

internal fragmentation and external fragmentation? [6 pt]

sizeof(person) Internal External

32 bytes 2 bytes 0 bytes

Alignment requirements listed above in red, next to the struct fields. A struct RentalC

instance will look as shown below:

age name[0]-[15] height weight
0 2 18 20 24 32

The 2 bytes between name and height count as internal fragmentation.

There is no external fragmentation.

(B) Instead of storing name as a 16-character array, we could use a character pointer instead. Briefly

describe an advantage and disadvantage to this new implementation. [4 pt]

Advantage:
 More flexibility: don’t have to use 16 bytes for every name (wasted space for short

names) and no upper limit of 16 bytes (really 18 bytes).
 Can “reuse” the same name in memory for different people.

Disadvantage:
 Harder to manage: need to malloc separate space for the name.
 Extra overhead of 8 bytes for pointer that isn’t used to store the name.
 Extra memory access to read name (have to read pointer value first).

 Note that you don’t actually save space in a struct instance due to alignment issues:

age name height weight
0 2 8 16 20 24 32

8

Question F7: Caching [20 pts]

We have 1 MiB of RAM and a 256-byte L1 data cache that is direct-mapped with 16-byte blocks and

random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: [3 pt]

Tag bits Index bits Offset bits

12 4 4

20 address bits. logଶ 16 ൌ 4 offset bits. 256-B cache = 16 blocks. 1 line/set → 16 sets.

(B) The code snippet below accesses an array of floats. Assuming i and temp are stored in

registers, the Miss Rate is 100% if the cache starts cold. What is the memory access pattern

(read or write to which elements/addresses) and why do we see this miss rate? [6 pt]

#define N 128
float data[N]; // &data = 0x08000 (physical addr)
for (i = 0; i < N/2; i += 1) {
 temp = data[i];
 data[i] = data[i+N/2];
 data[i+N/2] = temp;
}

Per Iteration:
(circle) →
(fill in) →

Access 1:
R / W to

data[___i___]

Access 2:
R / W to

data[_i+N/2_]

Access 3:
R / W to

data[___i___]

Access 4:
R / W to

data[_i+N/2_]

Miss Rate: The distance between data[i] and data[i+N/2] is (128/2)*4 = 256 bytes,
which is the size of our data cache. Therefore data[i] and data[i+N/2] map to the same
set (e.g. &data[0]=0x8000, &data[64]=0x8100). The alternating nature of our access
pattern causes continuous conflict misses because it is direct-mapped.

(C) For each of the proposed (independent) changes, draw ↑ for “increased”, ― for “no change”, or

↓ for “decreased” to indicate the effect on the miss rate from Part B for the code above: [8 pt]

Use double instead __―__ Double the cache size __↓__

Increase the associativity __↓__ No-write allocate __↓__

Using doubles doubles our jump between data[i] and data[i+N/2], but they still conflict.

Doubling cache size means they map into different sets while increasing the associativity allows

both blocks to coexist in the same set, so both remove the conflict misses. No-write allocate

means we skip the cache on access 3, so that access 4 in each loop iteration then becomes a Hit.

(D) Assume it takes 120 ns to get a block of data from main memory. If our L1 data cache has a hit

time of 3 ns and a miss rate of 5%, circle which of the following improvements would result in the

best average memory access time (AMAT). [3 pt] AMAT = HT + MRൈMP

2-ns hit time 4% miss rate 100-ns miss penalty
8 ns 7.8 ns 8 ns

SID: __1234567___

9

Question F8: Processes [18 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: [6 pt]

The 5 possible outcomes:
 1) 2, -1, 2, 5
 2) -1, 2, 2, 5
 3) -1, 2, 5, 2
 4) 2, -1, 5, 2
 5) 2, 5, -1, 2

(B) For each of the following types of synchronous exceptions, indicate whether they are intentional

(I) or unintentional (U) AND whether they are recoverable (R), maybe recoverable (M) or not

recoverable (N). [6 pt] By definition; see lecture slides.

 I/U R/M/N

Trap __I__ __R__

Fault __U__ __M__

Abort __U__ __N__

(C) For the following scenarios, circle the outcome when the child process executes exit(0). [6 pt]

Scenario: Outcome for child:

Parent is still executing. Alive Reaped Zombie

Parent has called wait(). Alive Reaped Zombie

Parent has terminated. Alive Reaped Zombie

wait() will cause the parent to reap the child, while init/systemd will reap the child if the

parent has terminated.

void concurrent(void) {
 int x = 2, status;
 if (fork()) {
 x *= 2;
 } else {
 x -= 1;
 }
 if (fork()) {
 x += 1;
 wait(&status);
 } else {
 x -= 2;
 }
 printf("%d",x);
 exit(0);
}

x=2
fork

fork

print

print

print wait

Process
Diagram:

x=4

x=1

x=-1

x=2

wait x=5 print

x=2

10

Question F9: Virtual Memory [18 pts]

Our system has the following setup:

 18-bit virtual addresses and 32 KiB of RAM with 1-KiB pages

 A 4-entry direct-mapped TLB with LRU replacement

 A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

(A) Compute the following values: [8 pt]

PPO width 10 bits # of bits per PTE 10 bits

VPN width 8 bits # of TLB sets 4 sets

Page offset is logଶ 1024 ൌ 10 bits wide. VPN is n-p = 8 bits wide. PTE holds PPN +

management bits = 5+5 = 10 bits. TLB is direct-mapped, so one set per entry.

(B) In a machine that uses virtual memory, what is the relative usage of the following that you would

expect? Briefly defend your choice. [4 pt]

Accessed more: (circle) TLB Page Table

Explanation: TLB is accessed on every memory access. The Page Table is only accessed on a
TLB miss (100% of the time).

(C) Assume the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed) when the

following loop is executed and that p is stored in a register. Which “event” occurs first and on

which value of p? [6 pt]

short *p = 0x1F400;
while (1) {

 *p = 0;
 p += 8;
}

 Circle one:
Page
Fault

Protection
Fault

TLB
Replacement

 p = 0x__1FC00__

Our offset field is 10 bits wide and TLBI is 2 bits wide (for 4 sets). The loop has 1 memory

(a write to *p) and increments our pointer by 8 shorts = 16 bytes = 0x10.

p starts at 0b01 1111 / 01/00 0000 0000, which will hit in set 1 (valid, tag 0x1F, write

permissible). After running through this page, the next page we access will be in set 2 (valid, tag

0x1F, and write permissible). The next page (set 3, tag 0x1F) will cause a TLB miss – this will

definitely cause a replacement, but might cause a page fault beforehand (the page table is not

shown). In our increments of 16 bytes, the first address we access on this page is 0x1FC00.

TLBT PPN Valid R W X

0x04 0x1D 1 1 0 1

0x1F 0x0C 1 1 1 0

0x1F 0x03 1 1 1 0

0x06 0x14 1 1 1 0

Sorry! This part of
the question was
poorly posed.

SID: __1234567___

11

Question F10: Memory Allocation [18 pts]

(A) In the following code, briefly identify the TWO memory errors. They can be fixed by changing

ONE line of code. [6 pt]

int N = 64;
double *func(double A[][], double x[]) {
 double *z = (double *) malloc(N * sizeof(float));
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 z[i] = A[i][j] + z[i] * x[j];
 }
 }
 return z;
}

Error 1: Wrong allocation size / buffer overflow – N*sizeof(float)

Error 2: Using uninitialized values – z[i] = A[i][j] + z[i] * x[j]

Line of code with fixes: double *z = (double *) calloc(N, sizeof(double));

(B) We are using a dynamic memory allocator on a 64-bit machine with an explicit free list,

4-byte boundary tags, and 16-byte alignment. Assume that a footer is always used. [6 pt]

Request return value block addr block size

internal
fragmentation
in this block

p = malloc(12); 0x610 0x_60C_ _32_ bytes _20_ bytes

Block starts a header size before the payload (returned addr). Minimum block size in explicit free

list is set by header+footer+2 pointers = 24 bytes, then aligned to 16-bytes: 32 bytes. Internal

fragmentation is size of block – payload size = 32 – 12 = 20 bytes.

(C) Consider the C code shown here. Assume that

the malloc call succeeds and that all variables

are stored in memory (not registers). In the

following groups of expressions, circle the one

whose returned value (assume just before

return 0) is the lowest/smallest. [6 pt]

 Group 1: &bar &foo foo

 Group 2: &foo main str

 Group 3: bar &str &ZERO

#include <stdlib.h>
int ZERO = 0;
char* str = "cse351";

int main(int argc, char *argv[]) {
 int *foo = malloc(888);
 int bar = 351;
 free(foo);
 return 0;
}

7) &foo/&bar (Stack)

6) foo (Heap)

5) &ZERO/&str (Static Data)

4) str (Literals)

3) main (Code)

2) bar (351)

1) ZERO (0)

