
CSE 351 Midterm - Winter 2017

February 08, 2017

Please read through the entire examination first, and make sure you write your name and NetID on all
pages! We designed this exam so that it can be completed in 50 minutes.

There are 5 problems for a total of 100 points. There is one extra credit problem worth 10 extra points
if you have time and feel adventurous :). The point value of each problem is indicated in the table below.
Write your answer neatly in the spaces provided. If you need more space, you can write on the back of
the sheet where the question is posed, but please make sure that you indicate clearly the problem to which
the comments apply. If you have difficulty with part of a problem, move on to the next one. They are
independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones,
no laptops). Please do not ask or provide anything to anyone else in the class during the exam. Make sure
to ask clarification questions early so that both you and the others may benefit as much as possible from the
answers.

Good Luck!

Name:

Student ID:

Section:

Problem Max Score Score

1. Number Representation 20

2. Addresses 10

3. Assembly and C 30

4. Pointers and Values 20

5. Procedures 20

TOTAL 100

Extra Credit 10

1

Name: NetID:

1. Number Representation (20 points)

Integers

(a) Assuming unsigned integers, what is the result when you compute UMAX+1?

(b) Assuming two’s complement signed representation, what is the result when you compute TMAX+1?

(c) How would you encode a date with the format <day=DD> <month=MM> <year=YYYY> in a 32 bit word in
a way that is easy to extract the day, month and year with masks? Write a C expression that extracts
the day only.

MSB LSB
uint32 date = /* a date in your format */;

uint32 day = ____________________________;

Floating Point

(d) Floating point is an approximation of real numbers. What are the components of a floating point
number? And what do you get when you add a very large floating point number with a very small
floating point number? Why? Please be concise :)

Casting and Pointers

(e) Given the following code:

float f = 5.0;

int i = (int) f;

int j = *((int *)&f);

Does i==j return true or false? Explain concisely.

2 of 9

Name: NetID:

2. Addresses (10 points)

The table below represents a chunk of memory on a little-endian machine with 64-bit words. For example,
address 0x27 contains byte 0xAB.

Word Address +0 +1 +2 +3 +4 +5 +6 +7

0x0000000000000000

0x0000000000000008

0x0000000000000010

0x0000000000000018

0x0000000000000020 0xAB

(a) Write word 0x0011223344556677 at address 0x00.

(b) In location 0x18, write a pointer that points to a location that stores value 0x44.

3 of 9

Name: NetID:

3. Assembly and C (30 points)

Consider the following x86-64 assembly, (partially blank) C code, and memory listing. Addresses and values
are 64-bit.

foo:

movl $0, %eax

L1:

testq %rdi, %rdi

je L2

movq (%rdi), %rdi

addl $1, %eax

jmp L1

L2:

ret

int foo(long *p) {

int result = ;

while () {

p = ;

= ;

}

return result;

}

Address Value
0x1000 0x1030

0x1008 0x1020

0x1010 0x1000

0x1018 0x0000

0x1020 0x1030

0x1028 0x1008

0x1030 0x0000

0x1038 0x1038

0x1040 0x1048

0x1048 0x1040

(a) Given the assembly of foo, fill in the blanks of the C version.

(b) Trace the execution of the call to
foo((long*)0x1000) in the table to
the right. Show which instruction
is executed in each step until foo

returns. In each space, place the
the assembly instruction and the
values of the appropriate registers
after that instruction executes. You
may leave those spots blank when the
value does not change. You might not
need all steps listed on the table.

Instruction %rdi (hex) %eax (decimal)

movl 0x1000 0

testq

je

(c) Briefly describe the value that foo returns and how it is computed. Use only variable names from the
C version in your answer.

4 of 9

Name: NetID:

4. Pointers and Values (20 points)

Consider the following variable declarations:

int x;

int y[11] = {0,1,2,3,4,5,6,7,8,9,10};

int z[][5] = {{210, 211, 212, 213, 214}, {310, 311, 312, 313,314}};

int aa[3] = {410, 411, 412};

int bb[3] = {510, 511, 512};

int cc[3] = {610, 611, 612};

int *w = {aa, bb, cc};

Variable Address
aa 0x000
bb 0x100
cc 0x200
w 0x300
x 0x400
y 0x500
z 0x600

(a) Fill in the table below with the address, value, and type of the given C expressions. Answer N/A if it
is not possible to determine the address or value of the expression. The first row has been filled in for
you.

C Expression Address Value Type (int/int*/int**)
x 0x400 N/A int
*&x

y[0]

*(y+1)

*(z[0]+1)

w[1]

5 of 9

Name: NetID:

5. Procedures (20 points)

Below is a simple program that calls a function bigbig with several arguments. A portion of the result of
objdump is shown beside it.

int main() {

return bigbig(1, 2, 3, 4, 5, 6, 7);

}

main:

100000f20:

100000f25:

100000f2a:

100000f2f: ... omitted ...

100000f34:

100000f3a:

100000f40:

100000f42: callq 0x100000f00 <bigbig>

100000f47: ... omitted ...

100000f48: retq

Suppose you ran gdb on this program, running the command break bigbig. Draw the state of the
stack and registers below at the time of the breakpoint (right before the instruction at 0x100000f00

executes).
Assume that, before doing any setup for the call to bigbig, %rsp = 0x1ffefff8 and all other relevant

registers are set to 0. If a value on the stack in the given table is still unknown after execution, you may
leave that box blank.

Stack Address Value

0x1ffefff8

0x1ffefff0

0x1ffeffe8

0x1ffeffe0

0x1ffeffd8

Reg Value Reg Value

%rax %r8

%rbx %r9

%rcx %r10

%rdx %r11

%rsi %r12

%rdi %r13

%rsp %r14

%rbp %r15

6 of 9

Name: NetID:

Extra Credit (10 points)

What does the code below compute?

int mystery(unsigned x) {

x = (x & 0x55555555) + ((x >> 1) & 0x55555555);

x = (x & 0x33333333) + ((x >> 2) & 0x33333333);

x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);

x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);

x = (x & 0x0000FFFF) + ((x >>16) & 0x0000FFFF);

return x;

}

7 of 9

Name: NetID:

References

Powers of 2:

20 = 1
21 = 2 2−1 = 0.5
22 = 4 2−2 = 0.25
23 = 8 2−3 = 0.125
24 = 16 2−4 = 0.0625
25 = 32 2−5 = 0.03125
26 = 64 2−6 = 0.015625
27 = 128 2−7 = 0.0078125
28 = 256 2−8 = 0.00390625
29 = 512 2−9 = 0.001953125
210 = 1024 2−10 = 0.0009765625

Hex/decimal/binary help:

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

8 of 9

Name: NetID:

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea D(base, index, scale), dest compute effective address (does not load) and place in register dest.

(dest = D + (base + (index * scale)) when scale is 1,2,4,8)

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)

sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift) by the number of bits
specified in 1st operand

jmp jump to address

je/jne conditional jump to address if zero flag is / is not set

js/jns conditional jump to address if sign flag is / is not set

cmp subtract src (1st operand) from dst (2nd) and set flags, discard result

test bit-wise AND src and dst and set flags, discard result

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12,
r13, r14, and r15. rsp is a special register.

%rax Return Value %r8 Argument #5
%rbx Callee Saved %r9 Argument #6
%rcx Argument #4 %r10 Caller Saved
%rdx Argument #3 %r11 Caller Saved
%rsi Argument #2 %r12 Callee Saved
%rdi Argument #1 %r13 Callee Saved
%rsp Stack Pointer %r14 Callee Saved
%rbp Callee Saved %r15 Callee Saved

9 of 9

