
CSE 351 Final Exam - Winter 2017

March 15, 2017

Please read through the entire examination first, and make sure you write your name and NetID on all
pages! We designed this exam so that it can be completed in 100 minutes.

There are 8 problems for a total of 100 points. The point value of each problem is indicated in the ta-
ble below. Write your answer neatly in the spaces provided. If you need more space, you can write on the
back of the sheet where the question is posed, but please make sure that you indicate clearly the problem
to which the comments apply. If you have difficulty with part of a problem, move on to the next one. They
are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones,
no laptops). Please do not ask or provide anything to anyone else in the class during the exam. Make sure
to ask clarification questions early so that both you and the others may benefit as much as possible from the
answers.

Good Luck!

Name:

Student ID:

Section:

Problem Max Score Score

1. C and Assembly 15

2. Buffer Overflow 15

3. Caches 15

4. Processes 10

5. Virtual Memory 15

6. Memory Allocation 10

7. Memory Bugs/Java 10

8. Pointers and Values 10

TOTAL 100

Extra Credit 10

1

Name: NetID:

1. C and Assembly (15 points)

Consider the following (partially blank) x86-64 assembly, (partially blank) C code, and memory listing.
Addresses and values are 64-bit, and the machine is little-endian. All the values in memory are in hex, and
the address of each cell is the sum of the row and column headers: for example, address 0x1019 contains the
value 0x18.

Assembly code:

foo:

movl $0,

L1:

cmpq $0x0, %rdi

je L2

cmp , 0x1(%rdi)

je

mov 0x8(%rdi), %rdi

jmp

L2:

ret

L3:

movzbl (%rdi), %eax
jmp L2

C code:

typedef struct person {

char height;

char age;

struct person* next_person;

} person;

int foo(person* p) {

int answer = ;

while () {

if (p->age == 24){

answer = p-> ;

break;

}

p = ;

}

return answer;

}

Memory Listing
Bits not shown are 0.

0x00 0x01 ... 0x05 0x06 0x07

0x1000 80 1B ... 00 00 00

0x1008 80 1B ... 00 00 00

0x1010 3F 18 ... 00 00 00

0x1018 3F 18 ... 00 00 00

0x1020 00 00 ... 00 00 00

0x1028 18 10 ... 00 00 00

0x1030 18 10 ... 00 00 00

0x1038 40 40 ... 00 00 00

0x1040 40 40 ... 00 00 00

0x1048 00 00 ... 00 00 00

(a) Given the code provided, fill in the blanks in the C and assembly code.

2 of 18

Name: NetID:

(b) Trace the execution of the call to
foo((person*) 0x1028) in the table
to the right. Show which instruc-
tion is executed in each step un-
til foo returns. In each space,
place the assembly instruction and
the values of the appropriate registers
after that instruction executes. You
may leave those spots blank when the
value does not change. You might not
need all steps listed on the table.

Instruction %rdi (hex) %eax (decimal)

movl 0x1028 0

cmpq

je

(c) Briefly describe the value that foo returns and how it is computed. Use only variable names from the
C version in your answer.

3 of 18

Name: NetID:

2. Buffer Overflow (15 points)

The following code runs on a 64-bit x86 Linux machine. The figure below depicts the stack at point A before
the function gatekeeper() returns. The stack grows downwards towards lower addresses.

void get_secret(char*);

void unlock(void);

void backdoor(void);

void gatekeeper() {

char secret[8];

char buf[8];

fill_secret(secret);

gets(buf);

if (strcmp(buf, secret) == 0)

unlock();

A:

return 0;

}

0x7ffffffffffe0080 ...
Return Address

secret

0x7ffffffffffe0068 buf

You are joining a legion of elite hackers, and your final test before induction into the group is gaining access
to the CIA mainframe. gatekeeper() is a function on the mainframe that compares a password you provide
with the system’s password. If you try to brute force the password, you will be locked out, and your hacker
reputation will be tarnished forever.

Assume that fill secret() is a function that places the mainframe’s password into the secret buffer so
that it can be compared with the user-provided password stored in buf.

Recall that gets() is a libc function that reads characters from standard input until the newline (‘\n’)
character is encountered. The resulting characters (not including the newline) are stored in the buffer that’s
given to gets() as a parameter. If any characters are read, gets() appends a null-terminating character
(‘\0’) to the end of the string.

strcmp() is a function that returns 0 if two (null-terminated) strings are the same.

(a) Explain why the use of the gets() function introduces a security vulnerability in the program.

(b) You think it may be possible to unlock the mainframe, even without the correct password. Provide
a hexadecimal representation of an attack string that causes the strcmp() call to return 0, such that
unlock() is then called. gatekeeper() should return normally, as to avoid raising any suspicion.

4 of 18

Name: NetID:

(c) The function backdoor() is located at address 0x0000000000000351. Construct a string that can be
given to this program that will cause the function gatekeeper() to unconditionally transfer control
to the function backdoor(). Provide a hexadecimal representation of your attack string.

(d) How should the program be modified in order to eliminate the vulnerabilities the function gets()

introduces?

(e) Describe two types of protection operating systems and compilers can provide against buffer overflow
attacks. Briefly explain how each protection mechanism works.

5 of 18

Name: NetID:

3. Caches (15 points)

For all sections, assume 512 byte, 16-bit physical address space, byte-addressable memory.

(a) Assume a 2-way set-associative, write-back cache with LRU replacement that allocates on a write-miss.
Assume the cache is initially empty. Suppose we execute the following code segment which copies an array
A[256][4], starting at address 0x1000 into an array B[256][4], starting at address 0x2000.

char[256][4] A;

char[256][4] B;

for (i = 0; i < 256; i++) {

for(j = 0; j < 4; j++) {

A[i][j] = B[i][j];

}

}

We know the cache miss rate for executing the code above is 1/8.

Determine block size, # of sets, # of tag bits:

(b) Assume an initially empty, direct mapped cache. Calculate the cache miss rate for the given code and
different block sizes.

char[256][4] A;

char[256][4] B;

for (j = 0; j < 4; j++) {

for(i = 0; i < 256; i++) {

A[i][j] = B[i][j];

}

}

4-byte block:

8-byte block:

16-byte block:

(c) Given the code below, draw the line plot (time vs. SIZE) runtime diagram. Remember to label the axes
of your plot.

int array[SIZE];

int sum = 0;

for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {

sum += array[j];

}

}

6 of 18

Name: NetID:

4. Processes (10 points)

(a) After a context switch, the VPN to PPN mappings in the TLB from the previous running process no
longer apply. A simple solution to this problem is to ”shoot down” the TLB, by invalidating all the
entries in the TLB, but this can often cause inefficiency if there is frequent context switching.

What additional information can be added to the TLB that can be utilized to reduce this inefficiency
in the TLB on a context switch? Hint: consider how processes can be uniquely identified by the MMU.

(b) Suppose you are in control of the CPU and operating system, and you realize that you have a process
A that requires a large uninterrupted chunk of CPU time to perform its important work. What would
you adjust to ensure that this can happen?

(c) Consider an OS running a process A which incurs a timer interrupt at time t1. The OS context switches
to some other processes which do some work. Later, the OS context switches back to process A at
time t2. Note that process A was not run between t1 and t2.

Circle the items which are guaranteed to be the same at time t1 and t2.

Register %rbx Process A’s Page Table Instruction Pointer

L1 Cache Page fault handler code Page Table Base Register

7 of 18

Name: NetID:

(d) Consider the following C program, running on an x86-64 Linux machine. The program starts running
at function main. Assume that printf flushes immediately.

int main() {

int* x = (int*) malloc(sizeof(int));

*x = 1;

if (fork() == 0) {

spoon(x);

} else {

*x = 8 * *x;

printf("%d\n", *x);

}

}

void spoon(int* x) {

printf("%d\n", *x);

if (fork() == 0) {

*x = 2 * *x;

} else {

*x = 4 * *x;

}

printf("%d\n", *x);

}

Provide two possible outputs of running this code.

Output 1: Output 2:

8 of 18

Name: NetID:

5. Virtual Memory (15 points)

Below is the entire physical memory of a very tiny machine that implements virtual memory. All the values
are in hex, and the address of each cell is the sum of the row and column headers: for example, physical
address 0x1a contains the value 0xdf. The page table is located in address 0x0, please described what format
you chose for the page table entry, i.e., especially where the physical page number is.

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x00 1a aa 10 21 70 98 84 82

0x08 2c 4a 31 48 9e 02 11 0a

0x10 8b 7c 5a 92 8d 06 b4 2b

0x18 35 21 df 82 06 32 67 91

0x20 47 06 2a 02 89 18 ad f7

0x28 18 89 a1 ff 47 3f 8e 1f

0x30 62 ef 00 11 1b 94 70 a3

0x38 22 00 5b 9a 0a 78 28 05

The virtual memory system uses 8-bit virtual addresses and 6-bit physical addresses. A single page is
16 bytes. Data is 1 byte-addressable. There is a fully assocative TLB with 2 entries that is empty at the
start of execution. It evicts according to LRU. Assume all page faults are handled properly by the
OS, and pages are brought in. The page table base register is 0x00. The page table entry layout is below,
where bit 0 is the least significant.

| PPN | unused |vld|

+---+---+---+---+---+---+---+---+

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

+---+---+---+---+---+---+---+---+

(a) Fill in the blanks below, explaining what happens when the following reads are executed in order.
The first column is the virtual address to be read. In the second, put “Hit” or “Miss”. In the third,
put the value read or “Fault” if there’s a page fault.

Address TLB Result

0x31

0x24

0xee

0x3a

0xe4

9 of 18

Name: NetID:

(b) As concisely as possible, provide three benefits of a virtual memory system (in general, unrelated to
the system on the previous page).

(i)

(ii)

(iii)

10 of 18

Name: NetID:

6. Memory Allocation (10 points)

(a) static void * searchFreeList(size_t reqSize) {

BlockInfo* freeBlock;

freeBlock = FREE_LIST_HEAD;

while (freeBlock != NULL){

if (SIZE(freeBlock->sizeAndTags) >= reqSize) {

return freeBlock;

} else {

freeBlock = freeBlock->next;

}

}

return NULL;

}

Consider an allocator that uses the above function to search for a free block, allocates it, and returns
exactly that block. Assume it increases the heap size as necessary.

This strategy is correct but rather naive. Describe two ways in which it could be improved to cause
less fragementation.
Note: we want improvements that cause less fragmentation; we don’t care about runtime performance.

(b) The strcpy(char* dest, char* src) function copies the string pointed to by src into the array
pointed to by dest, including the terminating null character (and stopping at that point).

Describe two ways this code may produce a runtime error:

char* copyFoo() {

char* foo = "foo";

char* copy = (char*) malloc(3 * sizeof(char));

strcpy(copy, foo);

return copy;

}

11 of 18

Name: NetID:

7. Memory Bugs (10 points)

For each code section below, briefly describe the memory bug and any security implications it may have.
Also, state whether this kind of bug can occur in Java, briefly explaining why or why not.

(a) int val;

...

scanf("%d", val);

(b) void read_packet() {

char s[8];

int i;

gets(s); /* reads \123456789" from stdin */

...

}

(c) int* search(int* p, int val) {

while (p && *p != val)

p += sizeof(int);

return p;

}

(d) int* foo() {

int val;

return &val;

}

(e) x = (int*) malloc(N * sizeof(int));

// <manipulate x>

free(x);

...

y = (int*) malloc(M * sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

12 of 18

Name: NetID:

8. Pointers and Values (10 points)

Consider the C code:

struct foo {

short ss[4];

char q;

};

struct bar {

struct bar* next;

char x;

struct foo baz;

};

int main() {

int question = 1;

struct bar b = { // this .field notation initializes structs in

.next = &b, // the way you would expect

.x = ‘e’,

.baz = {

.ss = {1,2,3,4},

.q = ‘H’

}

};

int answer = 42;

// <<< BREAK >>>

return 0;

}

The above C code runs until the shown BREAK. Fill in the table below with the address, value, and type
of the given C expressions at that point. Answer N/A if it is not possible to determine the address or value
of the expression. The first row has been filled in for you, revealing the address of b. Note the code was not
optimized by the compiler so the variables are stored in the order they appear in the code above.

C Expression Address Value Type (char/short*/etc.)

b 0x1000 the whole struct struct bar

answer

b.x

b.next

b.baz.ss[2]

question

13 of 18

Name: NetID:

E. (Extra Credit) Mystery function – again :) (10 points)

What does the function below compute?

int mystery(unsigned x) {

int k;

for (k = 0; x != 0; k++) x = x & 2*x;

return k;

}

Hint: Try and execute the code by hand with x = 0011 1111 1111 0011 1111 0011 1111 1000 (x is
in binary here).

14 of 18

Name: NetID:

Reference

You may tear this sheet off if you wish.

Powers of 2:

20 = 1
21 = 2 2−1 = 0.5
22 = 4 2−2 = 0.25
23 = 8 2−3 = 0.125
24 = 16 2−4 = 0.0625
25 = 32 2−5 = 0.03125
26 = 64 2−6 = 0.015625
27 = 128 2−7 = 0.0078125
28 = 256 2−8 = 0.00390625
29 = 512 2−9 = 0.001953125
210 = 1024 2−10 = 0.0009765625

Hex/decimal/binary help:

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

15 of 18

Name: NetID:

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea D(base, index, scale), dest compute effective address (does not load) and place in register dest.

(dest = D + (base + (index * scale)) when scale is 1,2,4,8)

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)

sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift) by the number of bits
specified in 1st operand

jmp jump to address

je/jne conditional jump to address if zero flag is / is not set

js/jns conditional jump to address if sign flag is / is not set

cmp subtract src (1st operand) from dst (2nd) and set flags, discard result

test bit-wise AND src and dst and set flags, discard result

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12,
r13, r14, and r15. rsp is a special register.

%rax Return Value %r8 Argument #5
%rbx Callee Saved %r9 Argument #6
%rcx Argument #4 %r10 Caller Saved
%rdx Argument #3 %r11 Caller Saved
%rsi Argument #2 %r12 Callee Saved
%rdi Argument #1 %r13 Callee Saved
%rsp Stack Pointer %r14 Callee Saved
%rbp Callee Saved %r15 Callee Saved

16 of 18

Name: NetID:

Reference from Lab 5

The functions, macros, and structs from lab5. These are all identical to those in the lab. Note that some of
them will not be needed in answering the exam questions.

Structs:

struct BlockInfo {

// Size of the block (in the high bits) and tags for whether the

// block and its predecessor in memory are in use. See the SIZE()

// and TAG macros, below, for more details.

size_t sizeAndTags;

// Pointer to the next block in the free list.

struct BlockInfo* next;

// Pointer to the previous block in the free list.

struct BlockInfo* prev;

};

Macros:

/* Macros for pointer arithmetic to keep other code cleaner. Casting

to a char* has the effect that pointer arithmetic happens at the

byte granularity. */

#define UNSCALED_POINTER_ADD ...

#define UNSCALED_POINTER_SUB ...

/* TAG_USED is the bit mask used in sizeAndTags to mark a block as

used. */

#define TAG_USED 1

/* TAG_PRECEDING_USED is the bit mask used in sizeAndTags to indicate

that the block preceding it in memory is used. (used in turn for

coalescing). If the previous block is not used, we can learn the

size of the previous block from its boundary tag */

#define TAG_PRECEDING_USED 2;

17 of 18

Name: NetID:

/* SIZE(blockInfo->sizeAndTags) extracts the size of a ’sizeAndTags’

field. Also, calling SIZE(size) selects just the higher bits of

’size’ to ensure that ’size’ is properly aligned. We align ’size’

so we can use the low bits of the sizeAndTags field to tag a block

as free/used, etc, like this:

sizeAndTags:

+---+

| 63 | 62 | 61 | 60 | | 2 | 1 | 0 |

+---+

^ ^

high bit low bit

Since ALIGNMENT == 8, we reserve the low 3 bits of sizeAndTags for

tag bits, and we use bits 3-63 to store the size.

Bit 0 (2^0 == 1): TAG_USED

Bit 1 (2^1 == 2): TAG_PRECEDING_USED

*/

#define SIZE ...

/* Alignment of blocks returned by mm_malloc. */

define ALIGNMENT 8

/* Size of a word on this architecture. */

define WORD_SIZE 8

/* Minimum block size (to account for size header, next ptr, prev ptr,

and boundary tag) */

#define MIN_BLOCK_SIZE ...

/* Pointer to the first BlockInfo in the free list, the list’s head.

A pointer to the head of the free list in this implementation is

always stored in the first word in the heap. mem_heap_lo() returns

a pointer to the first word in the heap, so we cast the result of

mem_heap_lo() to a BlockInfo** (a pointer to a pointer to

BlockInfo) and dereference this to get a pointer to the first

BlockInfo in the free list. */

#define FREE_LIST_HEAD ...

18 of 18

