
 1 of 7

CSE 351 Spring 2017 – Midterm Exam (8 May 2017)

Please read through the entire examination first!

 You have 50 minutes for this exam. Don’t spend too much time on any one problem!

 The last page is a reference sheet. Feel free to detach it from the rest of the exam.

 The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no

mobile phones).

There are 5 problems for a total of 50 points. The point value of each problem is indicated in the

table below. Write your answer neatly in the spaces provided.

Please do not ask or provide anything to anyone else in the class during the exam. Make sure to

ask clarification questions early so that both you and the others may benefit as much as possible

from the answers.

Good Luck!

Your Name:_____Sample Solution_____

UWNet ID:_______woof2017_________

Name of person to your left | Name of person to your right

 |

_______________________ | _________________________

Problem Topic Max Score

1 Integers & Floats 7

2 Hardware to Software 7

3 Structs & Arrays 7

4 Pointers & Memory 14

5 Stack Discipline 15

TOTAL 50

 2 of 7

1. Integers and Floats (7 points)

a. In the card game Schnapsen, 5 cards are used (Ace, Ten, King, Queen, and Jack) from 4 suits,

so 20 cards in total. What are the minimum number of bits needed to represent a single card in

a Schnapsen deck?

𝟓

We need 2 bits to represent 4 suits, and 3 bits to represent 5 ranks. So 5 bits in total.

b. How many negative numbers can we represent if given 7 bits and using two’s complement?

𝟐𝟔

Using 7 bits, the MSB has to be 1 for negative numbers. So there are 26 negative numbers in

total.

Consider the following pseudocode (we’ve written out the bits instead of listing hex digits):

int a = 0b0100 0000 0000 0000 0000 0011 1100 0000

int b = (int)(float)a

int m = 0b0100 0000 0000 0000 0000 0011 0000 0000

int n = (int)(float)m

c. Circle one: True or False:

a == b

The right-most 1 will be truncated (cannot fit in Mantissa)

d. Circle one: True or False:

m == n

No precision will be lost

e. How many IEEE single precision floating point numbers are in the range [4, 6) (That is, how

many floating point numbers are there where 4 <= x < 6?)

𝟐𝟐𝟐

4 in binary is 1.0 ⋅ 22.

6 in binary is 1.1 ⋅ 22.

So in Mantissa the right-most 22 bits can be either 0 or 1. Therefore, there are 222 bits in

range [4, 6)

 3 of 7

2. Hardware to Software (7 points)

a) If the word size of a machine is m bits, which of the following is typically true:

- TRUE / FALSE: m bits is the size of an integer

- TRUE / FALSE: m bits is the width of a register

b) If the size of a pointer on a machine is 32 bits, the size of the address space is how many bytes?

𝟐𝟑𝟐

c) ISA stands for: _Instruction Set Architecture____

d) TRUE / FALSE: The number of registers available is part of the ISA.

e) Part of the object file that keeps track of symbols/labels needed by this source file is the:

Relocation Table

f) The tool used to combine one or more .o files into an executable is called the:

___Linker or ld______.

(Hint: the answer is not “gcc”, we want the general or specific name of tool that does this

particular step.)

 4 of 7

3. Structs and Arrays (7 points)

You are given the following C program run on a 64-bit x86-64 (little endian) processor:

struct diddle {

 int x;

 struct diddle *y;

 int z;

 char c[3];

 };

 int main(void) {

 struct diddle d;

 d.x = 0xdeadbeef;

 d.y = &d;

 d.z = d.x >> 16;

 d.c[0] = 0x12;

 d.c[1] = 0x34;

 d.c[2] = 0x56;

 return 0;

 }

a. Below is a view of the stack. Suppose we have just reached the return statement and assume d is

placed at address 0x7fffffffac0. Please fill in the bytes on the stack in hex (you may omit the

0x prefix).

Address +0 +1 +2 +3 +4 +5 +6 +7

0x7fffffffac0 ef be ad de

0x7fffffffac8 c0 fa ff ff ff 07 00 00

0x7fffffffad0 ad de ff ff 12 34 56

0x7fffffffad8

c. What is the total size of this struct in bytes?

24 Bytes

d. Is there a reordering of the fields in diddle that would reduce its total size? If so, what is it?

No. The struct has to end at an address of multiple of 8.

 5 of 7

4. Pointers, Memory & Registers (14 points)

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and

initial state of memory (values in hex) shown below:

Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 AB EE 1E AC D5 8E 10 E7

0x08 F7 84 32 2D A5 F2 3A CA

0x10 83 14 53 B9 70 03 F4 31

0x18 01 20 FE 34 46 E4 FC 52

0x20 4C A8 B5 C3 D0 ED 53 17

int* ip = 0x00;

short* sp = 0x20;

long* yp = 0x10;

a) Fill in the type and value for each of the following C expressions. If a value cannot be

determined from the given information answer UNKNOWN.

Expression (in C) Type Value (in hex)

yp + 2 long* 0x20

*(sp – 1) short 0x52FC

ip[5] int 0x31F40370

&ip int** UNKNOWN

b) Assuming that all registers start with the value 0, except %rax which is set to 0x4, fill in the

values (in hex) stored in each register after the following x86 instructions are executed.

Remember to give enough hex digits to fill up the width of the register name listed.

 Register Value (in hex)

%rax 0x0000 0000 0000 0004

movl 2(%rax), %ebx %ebx 0x84f7 e710

leal (%rax,%rax,2), %ecx %ecx 0x0000 000c

movsbl 4(%rax), %edi %rdi 0x0000 0000 ffff fff7

subw (,%rax,2), %si %si 0x7B09

 6 of 7

5. Stack Discipline (15 points)

Examine the following recursive function:

long sunny(long a, long *b) {

 long temp;

 if (a < 1) {

 return *b - 8;

 } else {

 temp = a - 1;

 return temp + sunny(temp - 2, &temp);

 }

}

Here is the x86_64 assembly for the same function:

0000000000400536 <sunny>:

 400536: test %rdi,%rdi

 400539: jg 400543 <sunny+0xd>

 40053b: mov (%rsi),%rax

 40053e: sub $0x8,%rax

 400542: retq

 400543: push %rbx

 400544: sub $0x10,%rsp

 400548: lea -0x1(%rdi),%rbx

 40054c: mov %rbx,0x8(%rsp)

 400551: sub $0x3,%rdi

 400555: lea 0x8(%rsp),%rsi

 40055a: callq 400536 <sunny>

 40055f: add %rbx,%rax

 400562: add $0x10,%rsp

 400566: pop %rbx

 400567: retq

We call sunny from main(), with registers %rsi = 0x7ff…ffad8 and %rdi = 6. The value

stored at address 0x7ff…ffad8 is the long value 32 (0x20). We set a breakpoint at “return

*b - 8” (i.e. we are just about to return from sunny() without making another recursive call).

We have executed the sub instruction at 40053e but have not yet executed the retq.

Fill in the register values on the next page and draw what the stack will look like when the

program hits that breakpoint. Give both a description of the item stored at that location and the

value stored at that location. If a location on the stack is not used, write “unused” in the

Description for that address and put “-----” for its Value. You may list the Values in hex or

decimal. Unless preceded by 0x we will assume decimal. It is fine to use f…f for sequences of

f’s as shown above for %rsi. Add more rows to the table as needed. Also, fill in the box on the

next page to include the value this call to sunny will finally return to main.

Breakpoint

 7 of 7

Register Original Value Value at Breakpoint

rsp 0x7ff…ffad0 0x7ff…ffa90

rdi 6 0

rsi 0x7ff…ffad8 0x7ff…ffaa0

rbx 4 2

rax 5 -6

Memory address on stack Name/description of item Value

0x7ffffffffffffad8 Local var in main 0x20

0x7ffffffffffffad0 Return address back to main 0x400827

0x7ffffffffffffac8 Saved %rbx 4

0x7ffffffffffffac0 temp 5

0x7ffffffffffffab8 Unused ---------------

0x7ffffffffffffab0 Return address to sunny 0x40055f

0x7ffffffffffffaa8 Saved %rbx 5

0x7ffffffffffffaa0 temp 2

0x7ffffffffffffa98 Unused ---------------

0x7ffffffffffffa90 Return address to sunny 0x40055f

0x7ffffffffffffa88

0x7ffffffffffffa80

0x7ffffffffffffa78

0x7ffffffffffffa70

0x7ffffffffffffa68

0x7ffffffffffffa60

What value is finally returned to main by this call? 1
DON’T

FORGET

