

University of Washington – Computer Science & Engineering

Autumn 2017 Instructor: Justin Hsia 2017-10-30

Last Name:

First Name:

Student ID Number:

Name of person to your Left | Right

All work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in

CSE351 who haven’t taken it yet. Violation of these terms
could result in a failing grade. (please sign)

Do not turn the page until 5:10.
Instructions

 This exam contains 8 pages, including this cover page. Show scratch work for partial

credit, but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 70 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 11 10 6 12 11 50

SID: __________

2

Question 1: Number Representation [11 pts]

(A) Convert the number -25 into a 6-bit signed representation. Answer in binary. [1 pt]

0b

(B) What is the stored result of signed char c = (0x79 ^ (~0)) >> 2 in hex? [2 pt]

0x

(C) For char m = 0xCD, find the smallest positive integer n (in decimal) such that m+n

causes unsigned overflow but NOT signed overflow. [2 pt]

For the rest of this problem we are working with a floating point representation that follows the

same conventions as IEEE 754 except using 9 bits split into the following fields:

Sign (1) Exponent (4) Mantissa (4)

(D) What is the magnitude of the bias of this new representation? [1 pt]

(E) Encode the number 22 + 2-1 + 2-3 into this floating point scheme (binary). [2 pt]

0b

(F) Let f1 = 5.0 using this encoding. What is the smallest positive integer value of f2 such

that f1*f2 overflows? [3 pt]

SID: __________

3

Question 2: Pointers & Memory [10 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of

memory (values in hex) is shown below:

char* charP = 0x10
int* intP = 0x20
long* longP = 0x30

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 AC AB 03 01 BA 5E BA 11

0x08 5E 00 68 0C BE A7 CE FA

0x10 1D B0 99 DE AD 60 BB 40

0x18 14 CD FA 1D D0 41 EE 77

0x20 BA B0 FF 20 80 AA BE EF

(A) Using the values shown above, complete the C code below to fulfill the behaviors described

in the comments using pointer arithmetic. [4 pt]

(B) What are the values (in hex) stored in each register shown after the following x86-64

instructions are executed? We are still using the state of memory shown above.

Remember to use the appropriate bit widths. [6 pt]

 Register Data (hex)

 %rdi 0x 0000 0000 0000 000F

 %rsi 0x 0000 0000 0000 0002

movb (%rsi), %al %al 0x

leal 2(,%rdi,4), %ebx %ebx 0x

movzwq -3(%rdi,%rsi), %rcx %rcx 0x

char v1 = charP[_______]; // set v1 = 0xEE

long* v2 = longP + _______; // set v2 = 0x68

SID: __________

4

Question 3: Design Questions [6 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

(A) We have repeatedly stated that Intel is big on legacy and backwards-compatibility. Name

one example of this that we have seen in this class. [2 pt]

(B) Name one programming consequence if we decided to assign an address to every 4 bytes of

memory (instead of 1 byte). [2 pt]

(C) If we changed the x86-64 architecture to use 24 registers, how might we adjust the register

conventions? [2 pt]

One thing that should remain the same:

One thing that should change:

SID: __________

5

Question 4: C & Assembly [12 pts]

Answer the questions below about the following x86-64 assembly function:

(A) What variable type would %rdi be in the corresponding C program? [2 pt]

__________ rdi

(B) Give the following labels more intuitive/functional names: [1 pt]

.L4 ____________ .L2 ____________

(C) Convert lines 6-8 into C code. Use variable names that correspond to the register names

(e.g. al for the value in %al). [3 pt]

if (____________) _______________;

(D) This function uses a for loop. Fill in the corresponding parts below, again using register

names as variable names. None should be blank. [4 pt]

for (____________ ; ____________ ; ____________)

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [2 pt]

mystery:

 movq %rdi, %rdx # Line 1

.L4: movb (%rdi), %al # Line 2

 testb %al, %al # Line 3

 je .L2 # Line 4

 movb %al, (%rdx) # Line 5

 cmpb $32, %al # Line 6

 je .L3 # Line 7

 addq $1, %rdx # Line 8

.L3: addq $1, %rdi # Line 9

 jmp .L4 # Line 10

.L2: movb %al, (%rdx) # Line 11

 retq # Line 12

SID: __________

6

Question 5: Procedures & The Stack [11 pts]

The recursive function count_nz counts the number of non-zero elements in an int array.

Example: if int a[] = {-1,0,1,255}, then count_nz(a,4) returns 3. The function and

its x86-64 disassembly are shown below:

(A) How much space (in bytes) does this function take up in our final executable? [1 pt]

(B) The compiler automatically creates labels it needs in assembly code. How many labels are

used in count_nz (including the procedure itself)? [1 pt]

int count_nz(int* ar, int num) {
 if (num>0)
 return !!(*ar) + count_nz(ar+1,num-1);
 return 0;
}

0000000000400536 <count_nz>:

 400536: 85 f6 testl %esi,%esi

 400538: 7e 1b jle 400555 <count_nz+0x1f>

 40053a: 53 pushq %rbx

 40053b: 8b 1f movl (%rdi),%ebx

 40053d: 83 ee 01 subl $0x1,%esi

 400540: 48 83 c7 04 addq $0x4,%rdi

 400544: e8 ed ff ff ff callq 400536 <count_nz>

 400549: 85 db testl %ebx,%ebx

 40054b: 0f 95 c2 setne %dl

 40054e: 0f b6 d2 movzbl %dl,%edx

 400551: 01 d0 addl %edx,%eax

 400553: eb 06 jmp 40055b <count_nz+0x25>

 400555: b8 00 00 00 00 movl $0x0,%eax

 40055a: c3 retq

 40055b: 5b popq %rbx

 40055c: c3 retq

SID: __________

7

(C) In terms of the C function, what value is being saved on the stack? [1 pt]

(D) What is the return address to count_nz that gets stored on the stack (in hex)? [1 pt]

0x

(E) Assume main calls count_nz(a,5) with an appropriately-sized array and then prints

the result using printf. Starting with (including) main, answer the following in number

of stack frames. [2 pt]

Total
created:

Max
depth:

(F) Assume main calls count_nz(a,6) with int a[] = {3,5,1,4,1,0}. We find that

the return address to main is stored on the stack at address 0x7fffeca3f748. What

data will be stored on the stack at address 0x7fffeca3f720? You may use the provided

stack diagram, but you will be graded primarily on the answer box to the right. [3 pt]

0x

0x7fffeca3f748 <ret addr to main>

0x7fffeca3f740

0x7fffeca3f738

0x7fffeca3f730

0x7fffeca3f728

0x7fffeca3f720

(G) A similar function count_z that counts the number of zero elements in an array is made

by making a single change to count_nz. What is the address of the changed assembly

instruction? [2 pt]

0x

