

University of Washington – Computer Science & Engineering

Autumn 2017 Instructor: Justin Hsia 2017-12-13

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. Violation of these terms

could result in a failing grade. (please sign)

Do not turn the page until 12:30.
Instructions

 This exam contains 14 pages, including this cover page. Show scratch work for partial credit,

but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed

two pages (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 110 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question M1 M2 M3 M4 M5 F6 F7 F8 F9 F10 Total

Possible Points 8 2 8 10 8 10 9 10 9 5 79

2

Question M1: Number Representation [8 pts]

(A) Take the 32-bit numeral 0xC0800000. Circle the number representation below that has the

negative value for this numeral. [2 pt]

Floating Point Sign & Magnitude Two’s Complement Unsigned

Unsigned: Can only represent positive numbers.

Floating Point: S = 1 and E = 100000012 → Exp = 2, so a small negative number.

Sign & Mag: Negative number with magnitude 100 0000 10…02.

Two’s: Negative number with magnitude 011 1111 10…02 (flip bits + 1).

(B) Let float f hold the value 220. What is the largest power of 2 that gets rounded off when

added to f? Answer in exponential form, not just the exponent. [2 pt]

23 bits in M, so need 24th power less than 220 to get rounded off. 2-4

Traffic lights display three basic colors: red (R), yellow (Y), and green (G), so we can use them to

encode base 3! We decide to use the encoding 0↔R, 1↔Y, 2↔G. For example, 5 = 1ൈ31+2ൈ30 would

be encoded as YG. Assume each traffic light can only display one color at a time.

(C) What is the unsigned decimal value of the traffic lights displaying RGYY? [2 pt]

0 ൈ 3ଷ ൅ 2 ൈ 3ଶ ൅ 1 ൈ 3ଵ ൅ 1 ൈ 3଴ ൌ 18 ൅ 3 ൅ 1 ൌ 22. 22

(D) If we have 9 bits of binary data that we want to store, how many traffic lights would it take to

store that same data? [2 pt]

9 bits represents 512 things. Powers of 3: 1, 3, 9, 27, 81, 243, 729. 6 traffic lights

 Question M2: Design Question [2 pts]

(A) The machine code for x86-64 instructions are variable length. Name one advantage and one

disadvantage of this design decision. [2 pt]

Advantage: Machine code/Code section of memory is more compact (don’t need to pad).
 No limit on number of instructions in ISA.

Disadvantage: Harder to tell/find where to read next instruction.
 Need more complex hardware to fetch and/or decode instructions.

SID: __________

3

Question M3: Pointers & Memory [8 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). Below is the count_nz

function disassembly, showing where the code is stored in memory.

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are

executed? Use the appropriate bit widths. Hint: what is the value stored in %rsi? [4 pt]

 Register Value (hex)

 %rdi 0x 0000 0000 0040 0544

 %rsi 0x FFFF FFFF FFFF FFFF

leal 2(%rdi, %rsi), %eax %eax 0x 0040 0545

movw (%rdi,%rsi,4), %bx %bx 0x 8348

leal instruction calculates the address 0x400544 + (-1) + 2 = 0x400545.

movw instruction pulls two bytes starting at memory address 0x400544+4*(-1) = 0x400540,

which is 0x48 and 0x83. Remember little-endian!

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer

arithmetic. Let char* charP = 0x400544. [4 pt]

The only 0xDB byte in count_nz is found at address 0x40054a, 6 bytes beyond charP.

The difference between v2 and charP is 16 bytes. Since by pointer arithmetic we are moving 2

“things” away, charP must be cast to a pointer to a data type of size 8 bytes. Long or any

pointer (except void*) also accepted.

0000000000400536 <count_nz>:

 400536: 85 f6 testl %esi,%esi

 400538: 7e 1b jle 400555 <count_nz+0x1f>

 40053a: 53 pushq %rbx

 40053b: 8b 1f movl (%rdi),%ebx

 40053d: 83 ee 01 subl $0x1,%esi

 400540: 48 83 c7 04 addq $0x4,%rdi

 400544: e8 ed ff ff ff callq 400536 <count_nz>

 400549: 85 db testl %ebx,%ebx

 40054b: 0f 95 c2 setne %dl

 ... some instructions omitted here ...

char v1 = *(charP + __6__); // set v1 = 0xDB

int* v2 = (int*)((___double___*)charP - 2); // set v2 = 0x400534

4

Question M4: Procedures & The Stack [10 pts]

The function count_sp counts the number of spaces in a char array (this is the recursive version of

the mystery function from the Midterm). The function and its disassembly are shown below:

(A) The information found in the right-most column/portion of the disassembly is first generated as

the output of which of the following? Circle one. [1 pt]

Compiler Assembler Linker Loader

(B) The left-most column of the disassembly was generated by which of the following? [1 pt]

Compiler Assembler Linker Loader

(C) Why is %rbx being pushed onto the stack? What is %rbx being used for in this function? [2 pt]

Why push: Because (1) %rbx is a callee-saved register and (2) count_sp chooses to
use/change this register.

Usage: %rbx is being used to store the value of *str == ' ' (is this char a space?).

int count_sp(char* str) {
 if (*str)
 return (*str == ' ') + count_sp(str+1);
 return 0;
}

0000000000400536 <count_sp>:

 400536: 0f b6 07 movzbl (%rdi),%eax

 400539: 84 c0 testb %al,%al

 40053b: 74 16 je 400553 <count_sp+0x1d>

 40053d: 53 pushq %rbx

 40053e: 3c 20 cmpb $0x20,%al

 400540: 0f 94 c3 sete %bl

 400543: 0f b6 db movzbl %bl,%ebx

 400546: 48 83 c7 01 addq $0x1,%rdi

 40054a: e8 e7 ff ff ff callq 400536 <count_sp>

 40054f: 01 d8 addl %ebx,%eax

 400551: eb 06 jmp 400559 <count_sp+0x23>

 400553: b8 00 00 00 00 movl $0x0,%eax

 400558: c3 retq

 400559: 5b popq %rbx

 40055a: c3 retq

SID: __________

5

(D) What is the return address to count_sp that gets stored on the stack? Answer in hex. [1 pt]

The address of the instruction after callq. 0x 40054f

(E) Provide a call to count_sp that is guaranteed to cause a segmentation fault. [1 pt]

count_sp(____NULL____);

Zero also accepted, with and without casting.

(F) We call count_sp(" ! "). Fill in the incomplete snapshot of the stack below (in hex) once

this call to count_sp returns to main. For unknown words, write “garbage”. [4 pt]

0x7fffffffdb68 <ret addr to main>
0x7fffffffdb60 <original rbx>

0x7fffffffdb58 0x40054f

0x7fffffffdb50 0x1

0x7fffffffdb48 0x40054f

0x7fffffffdb40 0x0

0x7fffffffdb38 0x40054f

0x7fffffffdb30 garbage

0x7fffffffdb28 garbage

0x7fffffffdb20 garbage

4 total stack frames of count_sp created: count_sp(" ! ") → count_sp("! ") →

count_sp(" ") → count_sp(""). Stack data in these frames alternates between return

addresses (full credit given for your answer to part D) and pushed %rbx values (credit given for

your answer to part C). The last stack frame hits the base condition and doesn’t push %rbx onto

the stack. The data below this point is considered garbage.

6

Question M5: C & Assembly [8 pts]

Answer the questions below about the following x86-64 assembly function, which uses a struct:

(A) What C variable type would %rsi be in the corresponding C program? [1 pt]

In Line 3, %si is used in a cmpw instruction. ___short__ rsi

(B) %rdi is a pointer to a struct that contains 2 fields. What is the width of the second field? [1 pt]

Used in a movq instruction in Line 5. Also at offset of 8 bytes, matching
its alignment requirement.

__8__ bytes

(C) Based on Line 5, give an intuitive name for the second field in the struct. [1 pt]

Other variants accepted. next or ptr

(D) Convert lines 1, 2, 7, and 8 into C code. Use variable names that correspond to the register

names (e.g. al for the value in %al). [3 pt]

if (_rdi == NULL_) ___return 0___;

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [2 pt]

Returns 1 if linked list (singly-linked, linear) contains a specified value (in %si).

mystery:
.L3: testq %rdi, %rdi # Line 1
 je .L4 # Line 2
 cmpw %si, 0(%rdi) # Line 3
 je .L5 # Line 4
 movq 8(%rdi), %rdi # Line 5
 jmp .L3 # Line 6
.L4: movl $0, %eax # Line 7
 retq # Line 8
.L5: movl $1, %eax # Line 9
 retq # Line 10

SID: __________

7

Question F6: Caching [10 pts]

We have 64 KiB of RAM and a 2-KiB L1 data cache that is 4-way set associative with 32-byte blocks

and random replacement, write-back, and write allocate policies.

(A) Calculate the TIO address breakdown: [1.5 pt]

Tag bits Index bits Offset bits

7 4 5

16 address bits. logଶ 32 ൌ 5 offset bits. 2-KiB cache = 64 blocks. 4 lines/set → 16 sets.

(B) How many management bits (bits other than the block data) are there in every line in the cache?

[1 pt]

Tag bits + Valid bit + Dirty bit (write-back) __9__ bits

(C) The code snippet below accesses an array of doubles. Assume i is stored in a register.

Calculate the Miss Rate if the cache starts cold. [2.5 pt]

#define ARRAY_SIZE 256

double data[ARRAY_SIZE]; // &data = 0x1000 (physical addr)

for (i = 0; i < ARRAY_SIZE; i += 1)

 data[i] /= 100;

1/8 = 12.5%

Access pattern is read then write to data[i]. Stride = 1 double = 8 bytes. 32/8 = 4 strides per

block. The offset of &data is 0b00000, so we start at the beginning of a cache block. First access

(read) is a compulsory miss and the next 7 (over 4 different addresses) are hits. Since we never

revisit indices, this pattern continues for all cache blocks.

(D) For each of the proposed (independent) changes, write IN for “increased”, NC for “no change”, or

DE for “decreased” to indicate the effect on the Miss Rate for the code above: [4 pt]

Use float instead _DE_ Half the cache size _NC_

Split the loop body into:
data[i] /= 10;
data[i] /= 10;

_DE__ No-write allocate _NC_

Using floats means more strides/block. We never revisit blocks, so cache size doesn’t matter.

Since the entire array fits in the cache, running it through a 2nd loop results in all hits. No-write

allocate has no effect because all of our misses are on reads.

(E) Assume it takes 100 ns to get a block of data from main memory. If our L1 data cache has a hit

time of 2 ns and a miss rate of 3%, what is the average memory access time (AMAT)? [1 pt]

AMAT = HT + MR ൈ MP = 2 + 0.03 ൈ 100 = 5 __5__ ns

8

Question F7: Processes [9 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: [3 pt]

(1) _3, 5, 5, 1______

(2) _5, 3, 5, 1______

(3) _5, 5, 3, 1______

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional

from the perspective of the user process. [2 pt]

System call __N__ Hardware failure __U__

Segmentation fault __U__ Mouse clicked __U__

Syscalls are part of code you are executing. The others are external to the process.

(C) Briefly define a zombie process. Name a process that can reap a zombie process. [2 pt]

Zombie process: A process that has ended/exited but is still consuming system resources.

Reaping process: The parent process or init/systemd (PID 1).

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when

execv is run on a process. [2 pt]

Page table __Y__ PTBR __N__ Stack __Y__ Code __Y__

The process already has its own page table, so while we will need to invalidate PTEs from the old

process image, we don’t need to create another page table, so the PTBR can remain the same.

We replace/update the old process image’s virtual address space, including Stack and Code.

void concurrent(void) {
 int x = 3, status;
 if (fork()) {
 if (fork() == 0) {
 x += 2;
 printf("%d",x);
 } else {
 wait(&status);
 wait(&status);
 x -= 2;
 }
 }
 printf("%d",x);
 exit(0);
}

x=3

fork

fork

print
3

print print
5 5

print wait
wait

1

Simplified
Process
Diagram:

SID: __________

9

Question F8: Virtual Memory [10 pts]

Our system has the following setup:

 20-bit virtual addresses and 64 KiB of RAM with 256-B pages

 A 4-entry TLB that is fully associative with LRU replacement

 A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X)

(A) Compute the following values: [4 pt]

Page offset width _8 bits_ # of physical pages _28=256

of virtual pages 212=4096 TLBI width _0 bits_

Page offset is logଶ 256 ൌ 8 bits wide. VA space is 220 bytes, so 220/28 virtual pages and 216/28

physical pages. TLB is fully associative, so just one set and logଶ 1 ൌ 0 TLBI bits.

(B) Briefly explain why we make physical memory write-back and fully-associative. [2 pt]

Write-back: Avoid writing to disk as much as possible, or only when we absolutely need to.

Fully-associative: Don’t waste space in RAM; we want to use it fully utilize the limited space
we have.

(C) The TLB is in the state shown when the following code is executed. The code eventually causes

a protection fault. What are the values of the variables when the fault occurs? [4 pt]

long *p = 0x7F080;
for (int i = 0; 1; i++) {

 *p += 1;
 p += 4;
}

 p = ___0x7F200___

 i = __12__

The loop reads and then writes to the address in pointer p and then strides by 4 longs = 32

bytes = 0x20 addresses. p starts at address 0x7F080, which is at page offset 0x80, the middle

of the page. We see in the TLB that this page (TLBT 0x7F0) is valid with read and write

privileges, as is the following page (TLBT 0x7F1). However, the following page lacks write

privileges, so our first write to that page will cause a protection fault. This occurs at the very

first byte of the page: 0x7F200, which is reached when i = 12.

TLBT PPN Valid R W X

0x7F0 0xC3 1 1 1 0

0x7F2 0x3D 1 1 0 0

0x004 0xF4 1 1 0 1

0x7F1 0x42 1 1 1 0

10

Question F9: Memory Allocation [9 pts]

(A) In a free list, what is a footer used for? Be specific. Why did we not need to use one in

allocated blocks in Lab 5? [2 pt]

Footer: The footer is used to get information about the previous neighboring block.
 The footer is used for traversing the blocks in the heap backwards.
 The footer is used for bidirectional coalescing.

Lab 5: In Lab 5, we used a TAG_PRECEDING_USED tag in block headers instead, which was
sufficient because we don’t coalesce with allocated blocks.

(B) We are designing a dynamic memory allocator for a 64-bit computer with 4-byte boundary

tags and alignment size of 4 bytes. Assume a footer is always used. Answer the following

questions: [4 pt]

Maximum tags we can fit into the header (ignoring size): __2__ tags

Minimum block size if we implement an explicit free list: __24__ bytes

Maximum block size (leave as expression in powers of 2): __232-22__ bytes

With 4-byte alignment, lowest 2 bits are guaranteed to be zeros.

Explicit free list has minimum size that includes header, two pointers, and footer. We are told

boundary tags (header, footer) are 4 bytes each and pointers are 8 bytes in a 64-bit machine.

Max block size is when the size field is all 1’s (with two 0’s at the bottom for alignment).

(C) Consider the C code shown here. Assume that

the malloc call succeeds and foo is stored in

memory (not just in a register). Fill in the

following blanks with “>” or “<” to compare

the values returned by the following expressions

just before return 0. [3 pt]

&foo __>__ &ZERO

&str __>__ ZERO

&main __<__ str

ZERO and str are global variables, so their addresses are in the Static Data section of memory.

str's value is the address of a string literal, which sits at the bottom portion of Static Data.

foo is a local variable, so its address is in the Stack, but its value is an address in the Heap.

main is a label in Code/Instructions.

The virtual address space is arranged such that 0 < Instructions < Static Data < Heap < Stack.

#include <stdlib.h>
int ZERO = 0;
char* str = "cse351";

int main(int argc, char *argv[]) {
 int *foo = malloc(8);
 free(foo);
 return 0;
}

SID: __________

11

Question F10: C and Java [5 pts]

For this question, use the following Java object definition and C struct definition. Assume addresses

are all 64-bits.

public class RentalJ {
 String addr;
 short rooms;
 float rent;
 int[] zip;

 public void info() {
 System.out.println("Rental at "+addr);
 }
}
public class Apt extends RentalJ {
 int roommates;
 public int occupants() {
 return roommates+1;
 }
}

struct RentalC { K:
 char* addr; 8
 short rooms; 2
 float rent; 4
 int zip[5]; 4
}; Kmax = 8

(A) How much memory, in bytes, does an instance of struct RentalC use? How many of those

bytes are internal fragmentation and external fragmentation? [3 pt]

sizeof(struct RentalC) Internal External

40 bytes 2 bytes 4 bytes

Alignment requirements listed above in red, next to the struct fields. A struct RentalC

instance will look as shown below:

addr rent zip[0]-[4]
0 8 10 12 16 36 40

The 2 bytes between rooms and rent count as internal fragmentation.

The 4 bytes at the end count as external fragmentation.

(B) How much longer, in bytes, are the following for Apt than for RentalJ? Assume the Java

instance fields are aligned to 4 bytes. [2 pt]

Instance: 4 bytes

Virtual method table (vtable): 8 bytes

Apt extends RentalJ by adding a field and a method, so the length of that field (4 bytes for an

int) is added to the object instance length (no padding needed due to 4-byte alignment) and the

length of a reference is added to the vtable.

12

This page purposely left blank

