
Name:

CSE351 Winter 2016, Midterm Examination

February 8, 2016

Please do not turn the page until 11:30.

Rules:

• The exam is closed-book, closed-note, etc.

• Please stop promptly at 12:20.

• There are 110 (not 100) points, distributed unevenly among 7 questions (all with multiple parts):

• The exam is printed double-sided.

• The last two pages of the exam have useful reference information.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly

indicate what is your final answer.

• The questions are not necessarily in order of di�culty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (20 points) 32-bit integers

Hint/note: If you forget the exact details of little-endian, do not panic: You can probably still get a
lot of this question correct.

In writing your answers, be sure to put the byte with the lowest address on the left (and the byte with
the highest address on the right).

(a) Write the decimal number 13 in binary (base-2) as a 32-bit big-endian int.

(b) Write the decimal number 13 in hexadecimal (base-16) as a 32-bit big-endian int.

(c) Write the decimal number 13 in binary (base-2) as a 32-bit little-endian int.

(d) Write the decimal number 13 in hexadecimal (base-16) as a 32-bit little-endian int.

(e) For each of the following, answer same if the big-endian and little-endian representations are the
same, else answer di↵erent. Assume all numbers are 32-bit ints.

i. The minimum unsigned number

ii. The maximum unsigned number

iii. +1 in twos-complement

iv. -1 in twos-complement

v. The maximum twos-complement number

vi. The minimum (most-negative) twos-complement signed number

(f) Give in hexadecimal (base-16) a 32-bit value that represents the same unsigned number in big-
endian or little-endian and is not one of the choices in the previous problem.

Solution:

(Spaces have no significance.)

(a) 0000 0000 0000 0000 0000 0000 0000 1101

(b) 00 00 00 0D

(c) 0000 1101 0000 0000 0000 0000 0000 0000

(d) 0D 00 00 00

(e) i. same

ii. same

iii. di↵erent

iv. same

v. di↵erent

vi. di↵erent

(f) Many possible choices – here is one: FF 00 00 FF (need the two outside bytes the same and the
two inside bytes the same)

Name:

2. (16 points) Pointers and C

Consider this C code:

int a[6];

int * b = a;

for(int i=0; i < 6; ++i) {

a[i] = i*7;

}

a[2] = 3;

a += 3;

a[2] = 5;

a[-2] += 1;

Suppose the space for array a is allocated beginning at address 500 (in base-10).

(a) Fill in the boxes below to indicate the contents of memory at the addresses indicated immediately
after all the code above executes. The addresses are written in base-10 (decimal) and your answers
should be written in base-10 (decimal).

(b) Suppose we call someFunction(a,b); immediately after the code above executes.

i. What value does the callee receive for the first argument? (Answer in base-10.)

ii. What value does the callee receive for the second argument? (Answer in base-10.)

iii. What is the size in bytes of each argument passed to someFunction (on x86-64)?

Solution:

(a)

(b) i. 512

ii. 500

iii. 8 bytes each

Errata: array "a" cannot be modified
with +=. This example should have
used another pointer instead of the
array, like so:

int a[6];
int * b = a;
int * c = a;
for (int i=0; i < 6; ++i) {
 c[i] = i*7;
}
c[2] = 3;
c += 3;
c[2] = 5;
c[-2] += 1;

someFunction(c,b)

Name:

3. (19 points) Floating Point

(a) Consider the decimal number 1.25. Give the IEEE-754 representation of this number as a 32-bit
floating-point number by filling in the diagram below. Hint: Remember bias and any implicit
bits. Consider explaining your work for potential partial credit but explanations not necessary
for correct answers.

(b) The IEEE-754 representation for 0 as a 32-bit floating-point number is a “special case” in the
standard.

i. What is the bit-representation of (positive) 0?

ii. If this were not a special case in the standard, what floating-point number would these bits
represent? Give your answer in the form a · 2b.

(c) If x and y have type float, give two (very) di↵erent reasons that (x+2*y)-y == x+y might
evaluate to 0 (i.e., false). Describe each reason in roughly 2 English sentences: what is the term
used to describe the issue, what happens as a result, and what sort of values for x and y could
cause it? You do not need to provide exact examples for x and y that demonstrate the issue.

Solution:

(a) 0 0111 1111 0100 0000 0000 0000 0000 000

(b) i. All 0s

ii. 1 · 2�127

(c) (In either order)

• Overflow: If x and y are certain (very large) values, then x+2*y might produce the special
value “infinity” (or negative infinity is possible too) and then subtracting y still produces
infinity while x+y is still small enough not to overflow.

• Rounding error: If x and y are the right number of orders of magnitude apart, we might due
to rounding get that x+y is still x while x+2*y-y is slightly more than x.

Name:

4. (9 points) Computer-Architecture Design

(a) In roughly one English sentence, give a reason that it is better to have fewer registers in an
instruction-set architecture.

(b) In roughly one English sentence, give a reason that it is better to have many registers in an
instruction-set architecture.

(c) Yes or no: If we decided to change the x86-64 calling convention to make %rbx caller-saved, would
the implementation of the CPU need to change?

Solution:

(a) We can implement the CPU with faster access to the registers, and we can design instruction
encodings with fewer bits for identifying a register. (One reason is enough for full credit.)

We also gave partial credit for saying there are fewer registers to save across a function call.
This really is not a correct answer because unused registers do not take any e↵ort to save, but
the intuition on an open-ended question is good. And there is a related issue when di↵erent
programs/threads take turns executing.

(b) It is easier for humans or the compiler to write code without having to use the slower and harder-
to-use memory on the stack for temporary variables.

(c) No (it’s just a convention)

Name:

5. (18 points) x86-64 Programming

In this problem, you will show that x86-64 does not need many of its instructions (they are provided
for convenience and performance).

Hint: %rsp is the stack pointer and %rip is the program counter.

(a) Suppose there were no call instruction. Show how you could replace call foo with two assembly
instructions and one new label.

(b) Suppose there were no ret instruction. Show how you could replace ret with one other assembly
instruction. (Significant partial credit for using two instructions instead.)

(c) Suppose there were no push (i.e., pushq) instruction. Show how you could replace pushq %rax

with two assembly instructions.

(d) Suppose there were no pop (i.e., popq) instruction. Show how you could replace popq %rax with
two assembly instructions.

(e) In roughly 1 English sentence, explain why we cannot replace pushq (%rax) or popq (%rax) with
two assembly instructions.

Solution:

(a) pushq L

jmp foo

L:

(b) popq %rip

or in two instructions

addq $8,%rsp

jmp -8(%rsp)

(c) subq $8,%rsp

movq %rax,(%rsp)

(d) movq (%rsp),%rax

addq $8,%rsp

(e) Because the movq instruction can have at most one memory operand and (%rsp) is a memory
operand, so we need two instructions to move the data and one to update the value of %rsp.

Name:

6. (11 points) Stack Layout

Suppose before the assembly below is executed, the value of %rsp is 0xFFFF8888. (The address of each
instruction precedes it.)

0x00002f: pushq $7

0x000031: pushq $5

0x000033: addq $2, 8(%rsp)

0x000039: callq someOtherFunction

0x00003e: ...

Immediately after the callq instruction executes:

(a) What is the value of %rsp in base-16 (hexadecimal)?

(b) Show the contents of the stack for the range from your answer to part (a) up to (but not including)
0xFFFF8888. You can show each 8 bytes together as a single number on one “line” — for each
such “line” show the address and the contents. For both, use base-16 (hexadecimal).

Solution:

(a) 0xFFFF8888-0x16 (i.e., 24 bytes) = 0xFFFF8870

(b) 0xFFFF8880: 0x9 # (7+2)

0xFFFF8878: 0x5

0xFFFF8870: 0x3e # (the return address)

0xFFFF8888 - 0x18

Name:

7. (17 points) Control Flow

Consider this C switch-statement and the incorrect assembly, perhaps from a really buggy compiler,
for it:

int f(int y) {

switch(y) {

case 1:

y=17;

break;

case 9:

case 10:

case 3:

y=14;

case 4:

y++;

break;

case 6:

y=9;

break;

default:

return -5;

}

return y;

}

.section .rodata

.L4:

.quad .L8

.quad .L3

.quad .L8

.quad .L5

.quad .L6

.quad .L8

.quad .L7

.quad .L8

.quad .L8

.quad .L8

.quad .L8

.text

f:

cmpl $11, %edi

ja .L8

movl %edi, %eax

jmp *.L4(,%rax,8) # hint: this line is correct

.L3:

movl $17, %eax

ret

.L5:

movl $14, %edi

.L6:

leal 1(%rdi), %eax

ret

.L7:

movl $9, %eax

.L8:

movl $-5, %eax

ret

(a) The assembly code for f returns the same answer as the C code for f for some values of y but
not others. For which of the following values is the assembly code incorrect? No explanations
required. (More than one is incorrect.)

15 11 9 6 3 1 -2

(b) For one of your answers to part (a), a segmentation fault is likely. Which one? No explanation
required.

Solution:

(a) Incorrect for:

• 11 (explanation: The cmpl has an o↵-by-one error – it should use $10, not $11)

• 9 (explanation: The jump table has the wrong entry – it should jump to .L5)

• 6 (explanation: We should have a ret before .L8 rather than “falling through”)

(b) 11 (we read o↵ the end of the jump table and use “whatever bits are there” as the jump target)

REFERENCES

Powers of 2:

20 = 1
21 = 2 2-1 = .5
22 = 4 2-2 = .25
23 = 8 2-3 = .125
24 = 16 2-4 = .0625
25 = 32 2-5 = .03125
26 = 64 2-6 = .015625
27 = 128 2-7 = .0078125
28 = 256 2-8 = .00390625
29 = 512 2-9 = .001953125
210 = 1024 2-10 = .0009765625

Assembly Code Instructions:

push push a value onto the stack (including subtracting from the stack pointer)
pop pop a value from the stack (including adding to the stack pointer)

call jump to a procedure after pushing a return address onto the stack
ret pop return address from the stack and jump there

mov move a value
lea compute effective address and store in a dst

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)
sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
and bit-wise AND of src and dst with result stored in dst
or bit-wise OR of src and dst with result stored in dst
sar shift data in the dst to the right (arithmetic shift)

by the number of bits specified in 1st operand
sal shift data in the dst to the left (arithmetic shift)

by the number of bits specified in 1st operand

jmp jump to address
jne conditional jump to address if zero flag is not set
jg conditional jump to address if (strictly) greater than (signed comparison)
jle conditional jump to address if less than or equal (signed comparison)
ja conditional jump to address if (strictly) greater than (unsigned comparison)

cmp subtract src (1st operand) from dst (2nd) and set flags
test bit-wise AND src and dst and set flags

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx ,
rbp , r12 , r13 , r14 , and r15 . rsp is a special register.

