
CSE 351 – Midterm Exam – Spring 2016 
May 2, 2015 

Name:                                                                         

UWNetID:                                                                        

Please do not turn the page until 11:30. 

Instructions 
• The exam is closed book, closed notes (no calculators, no mobile phones, no laptops, no futuristic 

Google Glasses or HoloLenses). 

• Please stop promptly at 12:20. 

• There are 100 points total, divided unevenly among 5 problems (each with multiple parts). 

• The exam is printed double-sided. If you separate any pages, be sure to print your name at the 
top of each separated page so we can match them up. 

• Useful reference material can be found on the last 2 pages of the exam. Feel free to tear it off. 

Advice 
• Read questions carefully before starting. 

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate 
what is your final answer. 

• Questions are not necessarily in order of difficulty. Skip around or read ahead. Make sure you 
get to all the questions. 

• Relax. You are here to learn. 

Problem Points Score

1. Number Representation 20

2. C to Assembly 25

3. Computer Architecture 10

4. Stack Discipline 30

5. Pointers and Memory 15

Solution



Name: _______________________________

1. Number Representation (20 pts) 

Consider the binary value 1101012: 

(a) Interpreting this value as an unsigned 6-bit integer, what is its value in decimal? 
 
 
2^5+2^4+2^2+2^0 = 32 + 16 + 4 + 1 = 53 
 
 

(b) If we instead interpret it as a signed (two’s complement) 6-bit integer, what would its value be 
in decimal? 
 
 
-2^5 + 2^4 + 2^2 + 2^0 = -32 + 16 + 4 + 1 = -11 
 
(most significant bit becomes "negatively weighted")  
 

(c) Assuming these are all signed two’s complement 6-bit integers, compute the result (leaving it in 
binary is fine) of each of the following additions. For each, indicate if it resulted in overflow.  
 

Result: 
 
 
 
 
Overflow? 

 
 
 
Overflow only occurs for signed addition if the result comes out wrong. The easiest way to 
determine this is by looking at the signs: if 2 positive values result in a negative result, or 2 
negatives result in a positive, then overflow must have occurred. 

9    001001 -15    110001 011001 101111

-10  + 110110 -5  + 111011 + 001100 + 011111
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No No Yes No

111111 1  101100 100101 1  001110

Note: TMIN = -32
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Now assume that our fictional machine with 6-bit integers also has a 6-bit IEEE-like floating point 
type, with 1 bit for the sign, 3 bits for the exponent (exp) with a bias of 3, and 2 bits to represent the 
mantissa (frac), not counting implicit bits. 

(d) If we reinterpret the bits of our binary value from above as our 6-bit floating point type, what 
value, in decimal, do we get? 

 
 

-1.012 * 2^(4+1-3) = -1.012 * 2^2 = -1012 = -5 
 
 
 

(e) If we treat 1101012 as a signed integer, as we did in (b), and then cast it to a 6-bit floating point 
value, do we get the correct value in decimal? (That is, can we represent that value in our 6-bit 
float?) If yes, what is the binary representation? If not, why not? (and in that case you do not need 
to determine the rounded bit representation)  
 
 
No, we cannot represent it exactly because there are not enough bits for the mantissa. 
 
To determine this, we have to find out what the mantissa would be once we are in "sign-
and-magnitude" style: 110101 (-11) → 001011 (+11). In normalized form, this would be:  
(-1)^1 * 1.011 * 2^3, which means frac would need to be 011, which doesn’t fit in 2 bits. 
 

(f) Assuming the same rules as standard IEEE floating point, what value (in decimal) does the 
following represent? 

 
0.0 (it is a denormalized case) 

1 1 0 1 0 1

sign exp frac

0 0 0 0 0 0

sign exp frac
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2. C to Assembly (25 pts) 
Imagine we’re designing a new, super low-power computing device that will be powered by ambient 
radio waves (that part is actually a real research project). Our imaginary device’s CPU supports the 
x86-64 ISA, but its general-purpose integer multiply instruction (imul) is very bad and consumes 
lots of power. Luckily, we have learned several other ways to do multiplication in x86-64 in certain 
situations. To take advantage of these, we are designing a custom multiply function, spmult, that 
checks for specific arguments where we can use other instructions to do the multiplication. But we 
need your help to finish the implementation. 

Fill in the blanks with the correct instructions or operands. It is okay to leave off size suffixes.  
Hint: there are reference sheets with x86-64 registers and instructions at the end of the exam. 

long spmult(long x, long y) { 
  if (y == 0)       return 0; 
  else if (y == 1)  return x; 
  else if (y == 4)  return x * 4; 
  else if (y == 5)  return x * 5; 
  else if (y == 16) return x * 16; 
  else              return x * y; 
} 
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spmult(long, long): 

        testq   %rsi, %rsi 

        je     .L3 
        cmpq    $1, %rsi 
        je      .L4 

        cmpq    $4, %rsi

        jne    .L1 
.case4: 
        leaq    0(,%rdi,4), %rax 
        ret 
.L1: 
        cmpq    $5, %rsi 
        jne     .L2 

        leaq   (%rdi,%rdi,4), %rax 
        ret 
.L2: 
        cmpq    $16, %rsi 
        jne     .else 
        movq    %rdi, %rax 

        salq  $4, %rax 
        ret 
.L3: 
        movq    $0, %rax 
        ret 
.L4: 

        movq    %rdi, %rax 
        ret 
.else:  # fall back to multiply 
        movq    %rsi, %rax 
        imulq   %rdi, %rax 
        ret
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3. Computer Architecture Design (10 pts) 
In the previous question, we designed a new multiply function optimized for an imaginary low-
power CPU implementing the x86-64 ISA. The questions in this section consider various design 
choices facing the engineers of that CPU. 

(a) We designed a new multiply function because our low-power x86-64 CPU has a power-hungry 
implementation of imul. Would it have been okay for the designers of the chip to simply not 
implement imul? Briefly explain why or why not (roughly one English sentence). (4 pts) 
 
No, the designers would have to implement imul somehow, otherwise it wouldn’t conform 
to the x86-64 interface, and programs written in x86-64 would crash on it. However, that 
does not mean the implementation can’t be really terrible for certain instructions.  
 

(b) Faster registers consume more power. What if the designers decided to make half of the registers 
slower (probably r8-r15 because they’re used less often)? Would this still be a valid x86-64 
implementation? Explain briefly. (3 pts)  
 
 
Yes, the architecture/specification says nothing about how fast anything is. 
 
 
 

(c) Bigger registers consume more power. What if the designers wanted to make the registers 
smaller, only 4-bytes wide (but still call them %r_). Would this still implement the x86-64 ISA? 
Explain briefly. (3 pts)  
 
No, if you make the registers smaller then you can’t hold 8-byte pointers (or 8-byte longs).  

  of  5 12



Name: _______________________________

4. Stack Discipline (30 pts) 
Take a look at the following recursive function written in C: 

long sum_asc(long * x, long * y) { 
  long sum = 0; 
  long v = *x; 
  if (v >= *y) { 
    sum = sum_asc(x + 1, &v); 
  } 
  sum += v; 
  return sum; 
} 

Here is the x86-64 disassembly for the same function: 

0000000000400536 <sum_asc>: 
  0x400536:  pushq  %rbx 
  0x400537:  subq   $0x10,%rsp 
  0x40053b:  movq   (%rdi),%rbx 
  0x40053e:  movq   %rbx,0x8(%rsp) 
  0x400543:  movq   $0x0,%rax 
  0x400548:  cmpq   (%rsi),%rbx 
  0x40054b:  jl     40055b <sum_asc+0x25> 
  0x40054d:  addq   $0x8,%rdi 
  0x400551:  leaq   0x8(%rsp),%rsi 
  0x400556:  callq  400536 <sum_asc> 
  0x40055b:  addq   %rbx,%rax 
  0x40055e:  addq   $0x10,%rsp 
  0x400562:  popq   %rbx 
  0x400563:  ret 

Suppose that main has initialized some memory in its stack frame and then called sum_asc. We set 
a breakpoint at "return sum", which will stop execution right before the first return (from the 
deepest point of recursion). That is, we will have executed the popq at 0x400562, but not the ret.  

(a) On the next page: Fill in the state of the registers and the contents of the stack (in 
memory) when the program hits that breakpoint. For the contents of the stack, give both a 
description of the item stored at that location as well as the value. If a location on the stack is not 
used, write "unused" in the Description for that address and put "---" for its Value. You may list 
the Values in hex (prefixed by 0x) or decimal. Unless preceded by 0x, we will assume decimal. It 
is fine to use ff... for sequences of f’s, as we do for some of the initial register values. Add 
more rows to the table as needed. (20 pts) 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Breakpoint

Breakpoint
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Additional questions about this problem on the next page.  

Register Original Value Value at Breakpoint

%rsp 0x7ff..070 0x7ff..050

%rdi 0x7ff..080 0x7ff..088

%rsi 0x7ff..078 0x7ff..060

%rbx 2 7

%rax 42 2

Memory Address Description of item Value at Breakpoint

0x7ffffffff090 Initialized in main to: 1 1

0x7ffffffff088 Initialized in main to: 2 2

0x7ffffffff080 Initialized in main to: 7 7

0x7ffffffff078 Initialized in main to: 3 3

0x7ffffffff070 Return address back to main 0x400594

0x7ffffffff068 Original %rbx value 2

0x7ffffffff060 Temporary variable v or %rbx 7

0x7ffffffff058 Unused ---

0x7ffffffff050 Return address back to sum_asc 0x40055b

0x7ffffffff048 Previous value of %rbx (v from first call) 7

0x7ffffffff040 Temporary variable v or %rbx 2

0x7ffffffff038 Unused ---

0x7ffffffff030

0x7ffffffff028

0x7ffffffff020

0x7ffffffff018

0x7ffffffff010

0x7ffffffff008

0x7ffffffff000
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Grading Rubric
Registers (6 pts)
• %rsp: (2) (-1 if only missing last pop) 
• %rdi: (1) 
• %rsi: (1) 
• %rbx: (1) 
• %rax: (1) 

Stack (14 pts)
Generally, 1 pt for each stack frame where correct 
desc/value appears. 
• saved %rbx: desc (2), value (2) 
• temp "v"/"rbx": desc (2), value (2) 
• unused space: (2) second unused optional 
• return address desc (2), value (2)
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Continue to refer to the sum_asc code from the previous 2 pages. 

(b) What is the purpose of this line of assembly code: 0x40055e:  addq   $0x10,%rsp? 
Explain briefly (at a high level) something bad that could happen if we removed it. (5 pts) 
 
This resets the stack pointer to deallocate temporary storage. If we didn’t increment here, 
we wouldn’t pop the correct return address or the right value of %rbx. 
 
Note that this would not lead to slow stack overflow due to leaking memory – the first ret 
would most likely crash because it got the wrong return address; it is highly unlikely that it 
could continue to execute successfully long enough for this leak to be a problem. 
 

(c) Why does this function push %rbx at 0x400536 and pop %rbx at 0x400562? (5 pts) 
 
The register %rbx is a callee-saved register, so if we use it, it is our responsibility to set it 
back to what it was before we return from the function. 
 
We gave some points for people recognizing that the two have to be matched for 
everything else on the stack to work out (similar to the reasoning for deallocation above), 
but if that were the only reason, then we could have just left both of the instructions out. 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5. Pointers and Memory (15 pts) 
For this section, refer to this 8-byte aligned diagram of memory, with addresses increasing top-to-
bottom and left-to-right (address 0x00 at the top left). When answering the questions below, don’t 
forget that x86-64 machines are little-endian. If you don’t remember exactly how endianness works, 
you should still be able to get significant partial credit. 

 

(a) Fill in the type and value for each of the following C expressions:  

(b) Assume that all registers start with the value 0, except %rax which is set to 8. Determine what 
the final values of each of these registers will be after executing the following instructions: 

Expression (in C) Type Value (in hex)

*x int 0xf05101ab

x+1 int* 0x14

*(y-1) long 0x00000010efbeadde

s[4] char 0xEE
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int*  x = 0x10; 
long* y = 0x20; 
char* s = 0x00;

movb %al, %bl 

leal 2(%rax), %ecx 

movsbw (,%rax,4), %dx

Memory 
Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 aa bb cc dd ee ff 00 11

0x08 00 00 00 00 00 00 00 00

0x10 ab 01 51 f0 07 06 05 04

0x18 de ad be ef 10 00 00 00

0x20 ba ca ff ff 1a 2b 3c 4d

0x28 a0 b0 c0 d0 a1 b1 c1 d1

Register Value

%rax 8

%bl 8 or 0x8

%ecx 10 or 0xa

%dx 65466 or 0xffba

(1 pt)


(2 pts)


(2 pts)

(.5pts for each type, 2pts for each value)



End of exam!  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References 
Powers of 2 
20 = 1  2-1 = 0.5 
22 = 4  2-2 = 0.25 
23 = 8  2-3 = 0.125 
24 = 16  2-4 = 0.0625 
26 = 64  2-5 = 0.03125 
28 = 256  
210 = 1024 

Assembly Instructions 
mov a,b Copy from a to b 

movs a,b Copy from a to b with sign extension.  

movz a,b Copy from a to b with zero extension.

lea a,b Compute address and store in b.  
Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.

push src Push src onto the stack and decrement stack pointer.

pop dst Pop from the stack into dst and increment stack pointer.

call <func> Push return address onto stack and jump to a procedure.

ret Pop return address and jump there.

add a,b Add a to b and store in b (and sets flags)

imul a,b Multiply a by b and store in b (and sets flags)

and a,b Bitwise AND of a and b, store in b (and sets flags)

sar a,b Shift value of b right (arithmetic) by a bits, store in b (and sets flags)

shr a,b Shift value of b right (logical) by a bits, store in b (and sets flags)

shl a,b Shift value of b left by a bits, store in b (and sets flags)

cmp a,b Compare b with a (compute b-a and set condition codes based on result).

test a,b Bitwise AND a and b and set condition codes based on result.

jmp <label> Jump to address

j_ <label> Conditional jump based on condition codes (more on next page)

set_ a Set byte based on condition codes.
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Hex conversions 

0x00 = 0 

0xA  = 0xa = 0b1010 10 

0xF  = 0xf = 15 

0x10 = 16 

0x20 = 32



 

 

Name of "virtual" register

Name     Convention
Lowest  
4 bytes

Lowest 
2 bytes

Lowest 
byte

%rax Return value – Caller saved %eax %ax %al

%rbx Callee saved %ebx %bx %bl

%rcx Argument #4 – Caller saved %ecx %cx %cl

%rdx Argument #3 – Caller saved %edx %dx %dl

%rsi Argument #2 – Caller saved %esi %si %sil

%rdi Argument #1 – Caller saved %edi %di %dil

%rsp Stack pointer %esp %sp %spl

%rbp Callee saved %ebp %bp %bpl

%r8 Argument #5 – Caller saved %r8d %r8w %r8b

%r9 Argument #6 – Caller saved %r9d %r9w %r9b

%r10 Caller saved %r10d %r10w %r10b

%r11 Caller saved %r11d %r11w %r11b

%r12 Callee saved %r12d %r12w %r12b

%r13 Callee saved %r13d %r13w %r13b

%r14 Callee saved %r14d %r14w %r14b

%r15 Callee saved %r15d %r15w %r15b

Spring 2016x86  Programming

Choosing	instructions	for	conditionals
cmp b,a test a,b

je “Equal” a == b a & b == 0

jne “Not	equal” a != b a & b != 0

js “Sign”	(negative) a & b <  0

jns (non-negative) a & b >= 0

jg “Greater” a >  b a & b >  0

jge “Greater	or	equal” a >= b a & b >= 0

jl “Less” a <  b a & b <  0

jle ”Less	or	equal” a <= b a & b <= 0

ja “Above”	 (unsigned	>) a >  b

jb “Below”	(unsigned	<) a <  b

if (x < 3) {
return 1;

}
return 2;

T1: # x < 3:
movq $1, %rax
ret

T2: # !(x < 3):
movq $2, %rax
ret

cmpq $3, %rdi
jge T2

Register Use(s)

%rdi Argument	x

%rsi Argument	y

%rax Return	value

Sizes
C type x86-64 suffix Size (bytes)

char b 1

short w 2

int l 4

long q 8

Conditionals

Registers


