

University of Washington – Computer Science & Engineering

Autumn 2016 Instructor: Justin Hsia 2016-12-13

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Section you attend (circle): Chris
Yufang John Kevin Sachin

Suraj
Waylon Thomas Xi

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. (please sign)

Do not turn the page until 12:30.
Instructions

 This exam contains 14 pages, including this cover page. Show scratch work for partial credit,

but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Please detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed

two pages (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices. Remove

all hats, headphones, and watches.

 You have 110 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question M1a M1b M2 M3 M4 F5 F6 F7 F8 F9 Total

Possible Points 3 4 8 12 8 10 9 10 9 5 78

2

Question M1a: Floating Point [3 pts]

(A) What is the decimal value of the float 0xFF800000? [1 pt]

-∞

Sign bit is 1 and the Exponent field is all 1’s and the Mantissa field is all 0’s, so this is the special

case where the value is െ∞.

(B) We are storing scientific data on the order of 2-10 using 32-bit floats. What is the minimum

number of these data points, when multiplied together (e.g. a*b*c is 3), that cause underflow

numerical issues? [2 pt]

15

The smallest denormalized number is given by the encoding of all 0’s with a 1 in the least

significant bit (i.e. the Mantissa is 22 zeros followed by a one). This has the value of 2ିଶଷ ൈ

2ିଵଶ଺ ൌ 2ିଵସଽ. We then need to multiply 2ିଵ଴ fifteen times in a row before we hit 2ିଵହ଴.

Question M1b: Number Representation [4 pts]

DNA is comprised of four nucleotides (A, C, G, T – the building blocks of life!). We can convert

data into DNA nucleotide representation using the encoding 002↔A, 012↔C, 102↔G, 112↔T. For

example, 0x0 = 00002 = AA.

(C) What is the unsigned decimal value of the DNA encoding TAG? [2 pt]

50

TAG = 1100102 = 2ହ ൅ 2ସ ൅ 2ଵ = 32+16+2 = 50.

(D) If we have 256 bytes of binary data that we want to store, how many nucleotides would it take to

store that same data? [2 pt]

1024 nucleotides

256 bytes is 2048 bits. As we can see from the encoding, one nucleotide is equivalent to 2 bits, so

we need 2048/2 = 1024 nucleotides (base 4).

SID: __________

3

Question M2: Pointers & Memory [8 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). Below is the factorial function

disassembly, showing where the code is stored in memory.

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are

executed? Remember to use the appropriate bit widths. [4 pt]

 Register Value (hex)

 %rdi 0x0000 0000 0040 052D

 %rsi 0x0000 0000 0000 0003

leal (%rdi, %rsi), %eax %eax 0x0040 0530

movb 3(%rdi,%rsi,2), %bl %bl 0x07

The leal stores the address calculated by adding the contents of %rdi and %rsi together.

The address calculation for movb equates to 0x40052D + 9. Nine bytes past the start of fact is

the byte 0x07.

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer

arithmetic. Let char* cp = 0x40052D. [4 pt]

 The only 0x75 byte in fact is found at address 0x400535, 8 bytes beyond cp.

The difference between v2 and cp is 16 bytes. Since by pointer arithmetic we are moving 2

“things” away, cp must be cast to a data type of size 8 bytes.

000000000040052d <fact>:
 40052d: 83 ff 00 cmpl $0, %edi

 400530: 74 05 je 400537 <fact+0xa>

 400532: 83 ff 01 cmpl $1, %edi

 400535: 75 07 jne 40053e <fact+0x11>

 400537: b8 01 00 00 00 movl $1, %eax

 40053c: eb 0d jmp 40054b <fact+0x1e>

 40053e: 57 pushq %rdi

 40053f: 83 ef 01 subl $1, %edi

 400542: e8 e6 ff ff ff call 40052d <fact>

 400547: 5f popq %rdi

 400548: 0f af c7 imull %edi, %eax

 40054b: f3 c3 rep ret

char v1 = *(cp + __8__); // set v1 = 0x75

int* v2 = (int*)((long/double*)cp + 2); // set v2 = 0x40053D

4

Question M3: The Stack [12 pts]

The recursive Fibonacci sequence function fib() and its x86-64 disassembly are shown below:

(A) In no more than a sentence, explain what the instruction at address 0x40055f does (in terms of

the function – don’t be too literal) and why it is necessary. [2 pt]

It is saving the current value of ݊ into a callee-saved register (%rbx) so that it doesn’t
get overwritten by the first recursive call.

«Problem continued on next page»

int fib (int n) {
 if (n<2)
 return 1;
 else
 return fib(n-2) + fib(n-1);
}

000000000040055d <fib>:

 40055d: 55 push %rbp

 40055e: 53 push %rbx

 40055f: 89 fb mov %edi,%ebx

 400561: 83 ff 01 cmp $0x1,%edi

 400564: 7e 16 jle 40057c <fib+0x1f>

 400566: 8d 7f fe lea -0x2(%rdi),%edi

 400569: e8 ef ff ff ff callq 40055d <fib>

 40056e: 89 c5 mov %eax,%ebp

 400570: 8d 7b ff lea -0x1(%rbx),%edi

 400573: e8 e5 ff ff ff callq 40055d <fib>

 400578: 01 e8 add %ebp,%eax

 40057a: eb 05 jmp 400581 <fib+0x24>

 40057c: b8 01 00 00 00 mov $0x1,%eax

 400581: 5b pop %rbx

 400582: 5d pop %rbp

 400583: c3 retq

SID: __________

5

(B) How much space (in bytes) does this function take up in our final executable? [1 pt]

Count all bytes (middle columns) or subtract 0x40055d from the address
of the next instruction after fib (0x400584).

39 B

(C) Calling fib(4): How many total fib stack frames are created? [2 pt]

9

fib(4) → fib(2) → fib(0)

 → fib(1)

 → fib(3) → fib(1)

 → fib(2) → fib(0)

 → fib(1)

(D) Calling fib(4): What is the maximum amount of memory on the stack (in bytes) used for fib

stack frames at any given time? [3 pt]

88 or 96 bytes

The maximum depth is 4 stack frames. From the assembly code, we know that %rbp and %rbx

get pushed onto the stack every time fib is called. The return address to fib is also pushed

whenever we make a recursive call, so that makes 3 words for the first 3 levels and only 2 words

for the 4th level – a total of 11 words = 88 bytes. (96 bytes if counting return address as part of

Callee’s stack frame – which is valid according to the x86-64 Application Binary Interface)

(E) Below is an incomplete snapshot of the stack during the call to fib(4). Fill in the values of the

four missing intermediate words in hex: [4 pt]

Remember that we push the old values of
%rbp and %rbx onto the stack. %rbx holds
the old value of ݊ (i.e. the node above this
one in the “tree”). %rbp is used to hold the
return value of the first recursive call to fib.

The lowest part of the shown stack is part of
the stack frame for the fib(2) call at “depth
3”. As long as you know that you’re in one of
the recursive calls of fib(3) – given by
%rbx at 0x7fffc39b72a8 – then the stack
frame above is for fib(3).

0x7fffc39b72e8 <ret addr to main>
0x7fffc39b72e0 <original rbp>
0x7fffc39b72d8 <original rbx>

0x7fffc39b72d0 0x400578

0x7fffc39b72c8 0x2

0x7fffc39b72c0 0x4

0x7fffc39b72b8 0x400578

0x7fffc39b72b0 0x1
0x7fffc39b72a8 0x3

In fib(3)’s stack frame, it will have stored 0x2 (the return value from the first recursive call of

fib(4)) and 0x4 (݊ of the function that called fib(3)).

fib(2) is the second recursive call of fib(3) and fib(3) is the second recursive call of

fib(4), so the return address 0x400578 (not 0x40056e) is pushed onto the stack in both cases.

6

Question M4: C & Assembly [8 pts]

We are writing the recursive function search, which takes a char pointer and returns the address of
the first instance in the string of a specified char c, or the null pointer if not found.
Example: char* p = “TeST oNe”, then search(p,‘N’) will return the address p+6.

Fill in the blanks in the x86-64 code below with the correct instructions and operands. Remember to

use the proper size suffixes and correctly-sized register names!

Grading Notes:

Line 2: cmpb $0, %al also accepted.

Line 6: Given that argument p is a pointer, needed to use the full addq and %rdi.

Line 7: callq also accepted

char *search (char *p, char c) {
 if (!*p)
 return 0;
 else if (*p==c)
 return p;
 return search(p+1,c);
}

 search(char*, char):

 1 movzbl (%rdi), %eax # get *p

 2 testb %al, %al # conditional

 3 je .NotFound # conditional jump

 4 cmpb %sil, %al # conditional

 5 je .Found # conditional jump

 6 addq $1, %rdi # argument setup

 7 call search # recurse

 8 ret

 .NotFound:

 9 movl $0, %eax # return value

10 ret

 .Found:

11 movq %rdi, %rax # return value

12 ret

SID: __________

7

Question F5: Caching [10 pts]

We have 16 KiB of RAM and two options for our cache. Both are two-way set associative with 256 B

blocks, LRU replacement, and write-back policies. Cache A is size 1 KiB and Cache B is size 2 KiB.

(A) Calculate the TIO address breakdown for Cache B: [1.5 pt]

Tag bits Index bits Offset bits

4 2 8

14 address bits. logଶ 256 ൌ 8 offset bits. 2 KiB cache = 8 blocks. 2 blocks/set → 4 sets.

(B) The code snippet below accesses an integer array. Calculate the Miss Rate for Cache A if it

starts cold. [3 pt]

#define LEAP 4

#define ARRAY_SIZE 512

int nums[ARRAY_SIZE]; // &nums = 0x0100 (physical addr)

for (i = 0; i < ARRAY_SIZE; i+=LEAP)

 nums[i] = i*i;

1/16

Access pattern is a single write to nums[i]. Stride = LEAP = 4 ints = 16 bytes. 256/16 = 16

strides per block. First access is a compulsory miss and the next 15 are hits. Since we never

revisit indices, this pattern continues for all cache blocks. You can also verify that the offset of

&nums is 0x00, so we start at the beginning of a cache block.

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no

change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt]

Direct-mapped _NC_ Increase block size _MH_

Double LEAP _MM_ Write-through policy _NC_

Since we never revisit blocks, associativity doesn’t matter. Larger block size means more

strides/block. Doubling LEAP means fewer strides/block. Write hit policy has no effect.

(D) Assume it takes 200 ns to get a block of data from main memory. Assume Cache A has a hit

time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns. What is

the worst miss rate Cache B can have in order to perform as well as Cache A? [2 pt]

0.03 or 3%

AMATA = HTA + MRA ൈ MP = 4 + 0.04*200 = 12 ns.

AMATB = HTB + MRB ൈ MP ൑ 12 → 200 MRB ൑ 6 → MRB ൑ 0.03

8

Question F6: Processes [9 pts]

(A) In keeping with the explosive theme of this class, please complete the function below to create a

fork bomb, which continually creates new processes. [2 pt]

(B) Why is a fork bomb bad? Briefly explain what will happen to your system when it goes off. [2 pt]

Resource starvation from new processes that results in eventual grinding to a
halt and/or a system crash. We were looking for any answer along the lines of: (1) eats
into memory because of page tables and/or duplicated virtual address space or (2) eats up
CPU time with context switching.

(C) Name the three possible control flow outcomes (i.e. what happens next?) of an exception. [3 pt]

1) Abort

2) Restart the current instruction

3) Continue at the next instruction

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated during

a context switch. [2 pt]

Page table __N__ PTBR __Y__ TLB __Y__ Cache __N__

All of the page tables live in physical memory and continue to do so during a context switch.

The page table base register points to the current processes’ page table, so gets updated.

The TLB uses stores the VPN→PPN mappings for the old process, and thus needs to be flushed.

The cache is accessed using physical addresses, which aren’t altered during a context switch.

void forkbomb(void) {

 while(1) {
 fork();
 }

}

← Write within the text box

SID: __________

9

Question F7: Virtual Memory [10 pts]

Our system has the following setup:

 24-bit virtual addresses and 512 KiB of RAM with 4 KiB pages

 A 4-entry TLB that is fully associative with LRU replacement

 A page table entry contains a valid bit and protection bits for read (R), write (W), execute (X)

(A) Compute the following values: [2 pt]

Page offset width __12__ PPN width __7__
Entries in a page table __212

__ TLBT width __12__

Because TLB is fully associative, TLBT width matches VPN. There are 2VPN width entries in PT.

(B) Briefly explain why we make the page size so much larger than a cache block size. [2 pt]

Take advantage of spatial locality and try to avoid page faults as much as possible.
Disk access is also super slow, so we want to pull a lot of data when we do access it.

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the

following get updated during a page fault. [2 pt]

Page table __A__ Swap space __S__ TLB _A/N_ Cache __S__
When the page is place in physical memory, the new PPN is written into the page table entry.

Swap space will get updated if a dirty page is kicked out of physical memory.

For this class, we say that the page fault handler updates the TLB because it is more efficient.

In reality not all do (OS does not have access to hardware-only TLB; instr gets restarted).

To update a PTE (in physical mem), you check the cache, so it gets updated on a cache miss.

(D) The TLB is in the state shown when the following code is executed. Which iteration (value of i)

will cause the protection fault (segfault)? Assume sum is stored in a register.

Recall: the hex representations for TLBT/PPN are padded as necessary. [4 pt]

long *p = 0x7F0000, sum = 0;
for (int i = 0; 1; i++) {
 if (i%2)
 *p = 0;
 else
 sum += *p;
 p++;
}

i = 513

Only the current page (VPN = TLBT = 0x7F0) has write access. Once we hit the next page

(TLBT = 0x7F1), we will encounter a segfault once we try to write to the page. We are using

pointer arithmetic to increment our pointer by 8 bytes at a time. One page holds 212/23 = 512

longs, so we first access TLBT 0x7F1 when i = 512. However, the code is set up so that we

only write on odd values of i, so the answer is i = 513.

TLBT PPN Valid R W X

0x7F0 0x31 1 1 1 0

0x7F2 0x15 1 1 0 0

0x004 0x1D 1 1 0 1

0x7F1 0x2D 1 1 0 0

10

Question F8: Memory Allocation [9 pts]

(A) Briefly describe one drawback and one benefit to using an implicit free list over an explicit free

list. [4 pt]

Implicit drawback:
 Slower – have to check both allocated

and free blocks
 Must use both boundary tags in every

block – less room for payload

Implicit benefit:
 Simpler code; easier to manage
 Smaller minimum block size (less

internal fragmentation for free blocks)

(B) The table shown to the right shows the value of the header for the

block returned by the request: (int*)malloc(N*sizeof(int))

What is the alignment size for this dynamic memory allocator? [2 pt]

16 bytes

The alignment size is given by the difference in size once we cross an alignment boundary.

Remembering to mask out the allocated tag, we see that 6 ints = 24 bytes gets rounded up to 32

and 8 ints = 32 bytes gets rounded up to 48 (remember extra space for internal fragmentation –

at least the header, possibly other things).

(C) Consider the C code shown here. Assume that

the malloc call succeeds and foo is stored in

memory (not just in a register). Fill in the

following blanks with “>” or “<” to compare

the values returned by the following expressions

just before return 0. [3 pt]

ZERO __<__ &ZERO

foo __<__ &foo

foo __>__ &str

ZERO and str are global variables, so their addresses are in the Static Data section of memory.

str's value is the address of a string literal, which sits at the bottom portion of Static Data.

foo is a local variable, so its address is in the Stack, but its value is the address of a block in the

Heap.

The virtual address space is arranged such that 0 < Instructions < Static Data < Heap < Stack.

N header value
6 33
8 49
10 49
12 65

#include <stdlib.h>
int ZERO = 0;
char* str = "cse351";

int main(int argc, char *argv[]) {
 int *foo = malloc(8);
 free(foo);
 return 0;
}

SID: __________

11

Question F9: C and Java [5 pts]

For this question, use the following Java object definition and C struct definition. Assume addresses

are all 64-bits.

public class School {
 long students;
 String name;
 String abbrev;
 float tuition;

 public void cheer() {
 System.out.println(“Go ”+name);
 }
}
public class Univ extends School {
 String[] majors;
 public void cheer() {
 System.out.println(“Go ”+abbrev);
 }
}

struct School { K:
 long students; 8
 char* name; 8
 char abbrev[5]; 1
 float tuition; 4
}; Kmax = 8

(A) How much memory, in bytes, does an instance of struct School use? How many of those

bytes are internal fragmentation and external fragmentation? [3 pt]

sizeof(struct School) Internal External

32 bytes 3 4

Alignment requirements listed above in red, next to the struct fields. A struct School

instance will look as shown below:

students name abbrev tuition
0 8 16 21 24 28 32

The 3 bytes between abbrev and tuition count as internal fragmentation.

The 4 bytes at the end count as external fragmentation.

(B) How much longer, in bytes, are the following for Univ than for School? [2 pt]

Instance: 8 bytes

vtable: 0 bytes

Univ extends School by adding a field and overriding a method, so the length of that field (8

bytes for a reference) is added to the object instance length, but the vtable remains the same

length.

12

This page purposely left blank

