
CSE 351 Midterm - Winter 2015 Solutions

February 09, 2015

Please read through the entire examination first! We designed this exam so that it can be completed in 50
minutes and, hopefully, this estimate will prove to be reasonable.

There are 4 problems for a total of 100 points. The point value of each problem is indicated in the ta-
ble below. Write your answer neatly in the spaces provided. If you need more space, you can write on the
back of the sheet where the question is posed, but please make sure that you indicate clearly the problem
to which the comments apply. If you have difficulty with part of a problem, move on to the next one. They
are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones,
no laptops). Please do not ask or provide anything to anyone else in the class during the exam. Make sure
to ask clarification questions early so that both you and the others may benefit as much as possible from the
answers.

Good Luck!

Name:

Student ID:

Section:

Problem Max Score Score

1 20

2 20

3 25

4 35

EC 15

TOTAL 100

1

1. Number Representation (20 points)

Integers

(a) Assuming unsigned integers, what is the result when you compute UMAX+1?

0

(b) Assuming two’s complement signed representation, what is the result when you compute TMAX+1?

TMIN (0x80000000)

Floating Point

(c) Give M and E in the floating point representation of 3.75. Express each in both decimal and binary.
(Remember, E is the actual value of the exponent, not the encoding with bias)

Binary Decimal

E 1 1

M 1.111 or .111 1.875 or .875

Because the format of M was unspecified, either with or without implicit 1 was acceptable

(d) Is the ‘==’ operator a good test of equality for floating point values? Why or why not?

No, the == operator is not a good test of equality because floating point numbers often have a margin
of error.

Casting and Pointers

(e) Given the following code:

float f = 5.0;

int i = (int) f;

int j = *((int *)&f);

Does i==j return true or false? Explain.

i != j because i will contain the estimate of f as an integer while j contains the bit pattern representation of
5.0 in floating point.

2 of 8

2. Assembly and C (20 points)

Consider the following x86-64 assembly and C code:

<do_something>:

cmp $0x0,%rsi

jle <end>

xor %rax,%rax

sub $0x1,%rsi

<loop>:

lea (%rdi,%rsi, 2),%rdx

add (%rdx),%ax

sub $0x1,%rsi

jns <loop>

<end>:

retq

short do_something(short* a, int len) {

short result = 0;

for (int i = len - 1; i >= 0 ; i--) {

result += a[i] ;

}

return result;

}

(a) Both code segments are implementations of the unknown function do something. Fill in the missing
blanks in both versions. (Hint: %rax and %rdi are used for result and a respectively. %rsi is used
for both len and i)

(b) Briefly describe the value that do something returns and how it is computed. Use only variable names
from the C version in your answer.

do something returns the sum of the shorts pointed to by a. It does so by traversing the array
backwards.

3 of 8

3. Pointers and Values (25 points)

Consider the following variable declarations assuming x86-64 architecture:

int x;

int y[11] = {0,1,2,3,4,5,6,7,8,9,10};

int z[][5] = {{210, 211, 212, 213, 214}, {310, 311, 312, 313,314}};

int aa[3] = {410, 411, 412};

int bb[3] = {510, 511, 512};

int cc[3] = {610, 611, 612};

int *w[3] = {aa, bb, cc};

Variable Address of First Element
aa 0x000
bb 0x100
cc 0x200
w 0x300
y 0x500
z 0x600

(a) Fill in the table below with the address, value, and type of the given C expressions. Answer N/A if it
is not possible to determine the address or value of the expression. The first row has been filled in for
you.

C Expression Address Value Type (int/int*/int**)
x 0x400 N/A int
*&x 0x400 N/A int
y N/A 0x500 int*
*y 0x500 0 int

y[0] 0x500 0 int
*(y+1) 0x504 1 int
&(y[10]) N/A 0x528 int*
z[0]+1 N/A 0x604 int*

*(z[0]+1) 0x604 211 int
z[0][6] 0x618 311 int
w[1] 0x308 0x100 int*

w[2][0] 0x200 610 int

4 of 8

4. Recursion (35 points)

The fictional Fibonatri sequence is defined recursively for n=0,1,... by the following C code:

int fibonatri(int n) {

if (n == 0) {

return 0;

} else if (n == 1) {

return 1;

} else if (n == 2) {

return 2;

} else {

return fibonatri(n-3) - fibonatri(n-2) + fibonatri(n-1);

}

}

Here is a disassembly of fibonatri():

000000000040057b <fibonatri>:

40057b: 53 push %rbx

40057c: 48 83 ec 10 sub $0x10,%rsp

400580: 89 7c 24 0c mov %edi,0xc(%rsp)

400584: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp)

400589: 75 07 jne 400592 <fibonatri+0x17>

40058b: b8 00 00 00 00 mov $0x0,%eax

400590: eb 4c jmp 4005de <fibonatri+0x63>

400592: 83 7c 24 0c 01 cmpl $0x1,0xc(%rsp)

400597: 75 07 jne 4005a0 <fibonatri+0x25>

400599: b8 01 00 00 00 mov $0x1,%eax

40059e: eb 3e jmp 4005de <fibonatri+0x63>

4005a0: 83 7c 24 0c 02 cmpl $0x2,0xc(%rsp)

4005a5: 75 07 jne 4005ae <fibonatri+0x33>

4005a7: b8 02 00 00 00 mov $0x2,%eax

4005ac: eb 30 jmp 4005de <fibonatri+0x63>

4005ae: ?? ?? ?? ?? mov 0xc(%rsp),%eax

4005b2: 83 e8 03 sub $0x3,%eax

4005b5: 89 c7 mov %eax,%edi

4005b7: e8 bf ff ff ff callq 40057b <fibonatri>

4005bc: 89 c3 mov %eax,%ebx

4005be: 8b 44 24 0c mov 0xc(%rsp),%eax

4005c2: 83 e8 02 sub $0x2,%eax

4005c5: 89 c7 mov %eax,%edi

4005c7: ?? ?? ?? ?? callq 40057b <fibonatri>

4005cc: 29 c3 sub %eax,%ebx

4005ce: 8b 44 24 0c mov 0xc(%rsp),%eax

4005d2: ?? ?? ?? ?? sub $0x1,%eax

4005d5: 89 c7 mov %eax,%edi

4005d7: e8 9f ff ff ff callq 40057b <fibonatri>

4005dc: ?? ?? ?? ?? add %ebx,%eax

4005de: 48 83 c4 10 add $0x10,%rsp

4005e2: 5b pop %rbx

4005e3: c3 retq

5 of 8

(a) Fill in the four blanks in the disassembly. You should be able to gather hints from the surrounding
code.

(b) What register is used to pass the single argument to fibonatri()?

%edi

(c) Why is the register %rbx pushed onto the stack at the beginning of the function?

%rbx is pushed on to the stack because it is a callee saved register and is used during fibonatri().

(d) Why are iterative solutions generally preferred over recursive solutions from a memory usage perspec-
tive? How much of the stack is used during each iteration of fibonatri()?

Because fibonatri() is recursive, each call to fibonatri() creates a new stack frame. From a memory
usage perspective this can use large amounts of the stack and has the possibility of overflowing the
stack if it is called too many times.

The stack frame of fibonatri() is 32 bytes. 8 bytes for %rbx, 16 bytes for local variables, and 8 bytes
for the return address.

(e) What pattern do numbers in the Fibonatri sequence follow?

0, 1, 2, 1, 0, 1, 2, 1, ...

Extra Credit (15 points)

Write a non-recursive function in C with the same output as fibonatri() using only a switch statement
(Hint: use the modulus % operator)

int fibonatri_non_recursive(int n) {

switch(n % 4){

case 0: return 0;

case 1: return 1;

case 2: return 2;

case 3: return 1;

}

}

6 of 8

References

Powers of 2:

20 = 1
21 = 2 2−1 = 0.5
22 = 4 2−2 = 0.25
23 = 8 2−3 = 0.125
24 = 16 2−4 = 0.0625
25 = 32 2−5 = 0.03125
26 = 64 2−6 = 0.015625
27 = 128 2−7 = 0.0078125
28 = 256 2−8 = 0.00390625
29 = 512 2−9 = 0.001953125
210 = 1024 2−10 = 0.0009765625

Hex help:

0x00 = 0

0x0A = 10

0x0F = 15

0x20 = 32

0x28 = 40

0x2A = 42

0x2F = 47

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)

sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift) by the number of bits
specified in 1st operand

jmp jump to address

jne conditional jump to address if zero flag is not set

jns conditional jump to address if sign flag is not set

cmp subtract src (1st operand) from dst (2nd) and set flags

test bit-wise AND src and dst and set flags

7 of 8

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12,
r13, r14, and r15. rsp is a special register.

%rax Return Value %r8 Argument #5

%rbx Callee Saved %r9 Argument #6

%rcx Argument #4 %r10 Caller Saved

%rdx Argument #3 %r11 Caller Saved

%rsi Argument #2 %r12 Callee Saved

%rdi Argument #1 %r13 Callee Saved

%rsp Stack Pointer %r14 Callee Saved

%rbp Callee Saved %r15 Callee Saved

8 of 8

