
CSE 351 Final - Winter 2015

March 18, 2015

Please read through the entire examination first! We designed this exam so that it can be completed in 110
minutes and, hopefully, this estimate will prove to be reasonable.

There are 10 problems for a total of 100 points. The point value of each problem is indicated in the
table below. Write your answer neatly in the spaces provided. If you need more space, you can write on the
back of the sheet where the question is posed, but please make sure that you indicate clearly the problem to
which the comments apply, and that you write your name on all pages. If you have di�culty with part of a
problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones,
no laptops). Please do not ask or provide anything to anyone else in the class during the exam. Make sure
to ask clarification questions early so that both you and the others may benefit as much as possible from the
answers.

Good luck and have fun!

Name:

Student ID:

Problem Max Score Score
1 10
2 10
3 15
4 10
5 15
6 10
7 10
8 5
9 5

10 10
TOTAL 100

1

Name: 1 BUFFER OVERFLOW (10 POINTS)

1 Bu↵er overflow (10 points)

The following code runs on a 32-bit x86 Linux machine. The figure below depicts the stack at point A before
the function baz() returns. The stack grows downwards towards lower addresses.

int foo(char *buf);

void bar(void);

void baz() {

char buf[4];

gets(buf);

if (foo(buf))

bar();

A:

return 0;

}

Higher Addresses ...
Return Address

Old %ebp

Lower Addresses buf

Recall that gets() is a libc function that reads characters from standard input until the newline (‘\n’)
character is encountered. The resulting characters are stored in the bu↵er that’s given to gets() as a
parameter. If any characters are read, gets() appends a null-terminating character (‘\0’) to the end of the
string.

(a) Explain why the use of the gets() function introduces a security vulnerability in the program.

(b) Given the following input strings, indicate whether the string has the potential to cause a segmentation
fault. For any string that can cause a segmentation fault, explain why.

String Seg fault? Explanation

a Y / N

hi Y / N

beef Y / N

steak Y / N

fried chicken Y / N

2 of 16

Name: 1 BUFFER OVERFLOW (10 POINTS)

(c) The function bar() is located at address 0x00000351. Construct a string that can be given to this
program that will cause the function baz() to unconditionally transfer control to the function bar().
Provide a hexademical representation of your attack string.

(d) How should the program be modified in order to eliminate the vulnerability the function gets()

introduces?

(e) Describe two types of protection operating systems and compilers can provide against bu↵er overflow
attacks. Briefly explain how each protection mechanism works.

3 of 16

Name: 2 MYSTERY CACHE (10 POINTS)

2 Mystery cache (10 points)

Let mystery4.o define a cache with block size B, cache size C and associativity A.

(a) Getting cache associativity

Billy writes the following code to compute the associativity:

int cache_associativity(int cache_size) {

access_cache(0);

int i = 1;

while (access_cache(0)) {

access_cache(i * cache_size);

i++;

}

return i;

}

His code never seems to return the correct value. Without rewriting his code, explain the flaw in his
method.

(b) Suppose some person in your class named Susie is only given B and C. Give a sequence of cache
queries (each of which return HIT or MISS) whose responses would allow Susie to determine that the
associativity of the cache is 2.

(c) Can we still address a cache using the same methods presented in class if A is not a power of 2? Explain
why/why not?

(d) Let B = 16, C = 1024, and A = 2. How many sets are in the cache?

4 of 16

Name: 3 VIRTUAL MEMORY (15 POINTS)

3 Virtual Memory (15 points)

We have a system with the following properties:

• a virtual address of 14 bits

• a physical address of 10 bits

• pages are 64 bytes

• a TLB with 16 entries that is 4-way set associative

• a cache with 8 sets, a 4 byte block size, and is 2-way set associative

The current contents of the TLB, Page Table, and Cache are shown below:

TLB

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 - 0 17 0 1 06 - 0 3F E 1
1 15 3 1 0A - 0 00 B 1 01 F 1
2 07 - 0 2B - 0 3F 2 1 2B - 0
3 31 C 1 2C 1 1 02 0 0 1A 1 1

Page Table (Note: Not all entries are shown)

VPN PPN Valid VPN PPN Valid VPN PPN Valid VPN PPN Valid

00 3 1 04 - 0 08 3 1 0C F 1
01 6 1 05 - 0 09 - 0 0D - 0
02 3 1 06 - 0 0A 1 1 0E 6 1
03 3 1 07 - 0 0B 3 1 0F A 1

Cache

Set Tag V B0 B1 B2 B3 Tag V B0 B1 B2 B3

0 1F 1 99 1F 34 56 11 1 DE AD BE EF
1 0C 0 27 A4 C5 23 02 0 FF FF FF FF
2 01 1 54 21 65 78 0F 0 FF FF FF FF
3 1F 1 01 02 03 04 07 1 CA FE 12 34
4 16 1 3E DE AD 0F 14 0 FF FF FF FE
5 1D 0 7F FF FF FF 03 1 1F 2E 11 09
6 03 1 12 5E 67 90 12 0 00 00 00 01
7 13 0 00 00 00 00 0F 1 12 34 56 78

5 of 16

Name: 3 VIRTUAL MEMORY (15 POINTS)

(a) How many total entries are in the page table? (Note: the page table above does not show every PTE)

(b) Fill in the blanks with the number of bits needed for each component.

Virtual Page Number Virtual Page O↵set

TLB Tag TLB Index

Physical Page Number Physical Page O↵set

Cache Tag Cache Index Cache O↵set

(c) Complete the following memory accesses using the given virtual addresses and the information on the
previous page. Use N/A if the column cannot be determined. Give your answers as hex numbers for
Physical Address, and Data. Use Y/N for TLB Miss?, Page Fault?, and Cache Miss?

Virtual Address Physical Address Data TLB Miss? Page Fault? Cache Miss?

0x3F36

0x01BA

0x02EE

0x2512

6 of 16

Name: 4 PROCESSES (10 POINTS)

4 Processes (10 points)

(a) (4 points) What are the two key abstractions that processes provide to programs? For each ab-
straction describe a mechanism that enables it to work. Note: Full sentences are not required.

(b) (6 points) Consider the following C program:

void forker() {

int n = 1;

if (fork() == 0) {

printf("%d\n", n);

n = n << 1

if(fork() == 0) {

n = n << 1;

printf("%d\n", n);

n = n << 1;

}

} else {

n = 0;

}

printf("%d\n", n);

}

Which outputs are possible for this program? (circle your choices)

i) 02148

ii) 14028

iii) 01428

iv) 20418

v) 10482

7 of 16

Name: 5 ASSEMBLY (15 POINTS)

5 Assembly (15 points)

Suppose your CSE friend wants to send you an encrypted message. She’s given you a 1 byte decryption
key beforehand, and has made the message by XOR’ing this key with each byte in her original message.
Unfortunately, you’re working on a computer which only knows x86-64 assembly.

To decode her message, write an assembly function which XOR’s each byte in the message with the
decryption key. Suppose you have a pointer to the beginning of the message stored in %rdi, the size (in
bytes) of the message stored in %rsi, and the decryption key stored in %rdx. You should overwrite the
current contents of the message in memory. Two instructions have been added to get you started. Note that
the first line suggests which registers you should use as variables. For reference, our solution added 5 lines.

decrypt_message:

//Your code here

loop_start:

movb %r10, (%rdi, %rax) ; Put the byte back into memory

jne <loop_start>

ret

8 of 16

Name: 6 POINTERS, ARRAYS AND STRUCTS (10 POINTS)

6 Pointers, arrays and structs (10 points)

Consider the following variable declarations, assuming x86 64 architecture:

struct {

int a;

char b;

double c;

} struct_type;

struct_type* m;

struct_type n[2];

Fill in the following table:

C Expression Evaluates to? Resulting data type

m 0x10000000

n 0x20000000

&(m->a)

&(m->b)

&(m->c)

sizeof(struct type)

sizeof(*m)

sizeof(m)

&(n[0])

&(n[0].a)

&(n[1].a)

9 of 16

Errata: the struct declara.on was meant to include a
typedef. As it was wri9en, "struct_type" would be a
variable of the unnamed struct type, rather than a new
name for the struct.

typedef

Name: 7 C TO ASSEMBLY (10 POINTS)

7 C to assembly (10 points)

(a) Consider the following functions (hint: don’t forget to think about alignment in structs):

struct building1 { struct building2 {

char *name; char *address;

int x; char state3;

int y; unsigned int zip;

} }

int print_name_and_address(struct building1 *a, struct building2 *b) {

int ret;

ret = printf("%s, %s", a->name, b->address);

return ret;

}

int print_address_and_coordinate(struct building1 *a, struct building2 *b) {

int ret;

ret = printf("%s, (%d, %d)", b->address, a->x, a->y);

return ret;

}

int print_state_and_zip(struct building2 *b) {

int ret;

ret = printf("%s, %u", b->state, b->zip);

return ret;

}

(b) Consider the following x86-64 assembly code

<func1>:

subq $0x8, %rsp

movq %rdi, %rdx

movq (%rdx), %rsi

movl $0x400704, %edi

xorq %eax, %eax

call printf

addq $0x8, %rsp

retq

<func2>:

subq $0x8, %rsp

movl 0xc(%rdi), %ecx

movl 0x8(%rdi), %edx

movq (%rsi), %rsi

movl $0x4006f7, %edi

movl $0x0, %eax

call printf

addq $0x8, %rsp

retq

10 of 16

Name: 7 C TO ASSEMBLY (10 POINTS)

<func3>:

subq $0x8, %rsp

movl 0xc(%rdi), %edx

leaq 0x8(%rdi), %rsi

movl $0x400704, %edi

xorq %eax, %eax

call printf

addq $0x8, %rsp

retq

<func4>:

push %rbx

push %r12

subq $0x28, %rsp

movq %rdi, 0x8(%rsp)

movq %rsi, (%rsp)

movq (%rsp), %rbx

movq (%rbx), %rdx

movq 0x8(%rsp), %r12

movq (%r12), %rsi

movl $0x4006eo, %edi

movl $0x0, %eax

call printf

movl %eax, 0x1c(%rsp)

movl 0x1c(%rsp), %eax

addq $0x28, %rsp

popq %r12

popq %rbx

retq

(c) Match each C function with its correct assembly version. Note: one assembly version will not match.

(d) Describe what the non-matching assembly code is printing assuming its argument is one of the building
structs. (write both possibilities)

11 of 16

Name: 8 MEMORY BUGS (5 POINTS)

8 Memory bugs (5 points)

What is wrong with each of these three functions below?

void foo() {

int val;

...

scanf("%d", val);

}

Bug description:

int N = 20;

int M = 10

void bar() {

int **p;

p = (int **)malloc(N * sizeof(int));

for (i=0; i<N; i++) {

p[i] = (int *)malloc(M * sizeof(int));

}

}

Bug description:

int *bla () {

int val;

return &val;

}

Bug description:

12 of 16

Name: 9 JAVA (5 POINTS)

9 Java (5 points)

(a) Why can Java programs do array access out-of-bounds checks?

(b) Do you have to explicitly free allocated memory in Java? Why yes or why not?

13 of 16

10 Aligned malloc for matrices (10 points)

Allocating a matrix is common operation in numeric programs (e.g., machine learning). Aligning matrices to
cache-line granularity is often beneficial for performance. Your goal is to write the code for a malloc wrapper
that given the matrix parameters (nRows rows ⇥ nCols columns), allocates enough memory to return a
pointer to a 64-byte aligned block. We provided a function prototype for you below with blanks to be filled.
You do not need to worry about freeing the allocated block.

double* aligned_matrix_malloc(size_t nRows, size_t nCols) {

double *aligned_ptr;

void *m_ptr = malloc();

aligned_ptr = ;

return aligned_ptr;

}

14 of 16

References

Powers of 2:

20 = 1
21 = 2 2�1 = 0.5
22 = 4 2�2 = 0.25
23 = 8 2�3 = 0.125
24 = 16 2�4 = 0.0625
25 = 32 2�5 = 0.03125
26 = 64 2�6 = 0.015625
27 = 128 2�7 = 0.0078125
28 = 256 2�8 = 0.00390625
29 = 512 2�9 = 0.001953125
210 = 1024 2�10 = 0.0009765625

Hex help:

0x0 = 0 = 0b0000

0x1 = 1 = 0b0001

0x2 = 2 = 0b0010

0x3 = 3 = 0b0011

0x4 = 4 = 0b0100

0x5 = 5 = 0b0101

0x6 = 6 = 0b0110

0x7 = 7 = 0b0111

0x8 = 8 = 0b1000

0x9 = 9 = 0b1001

0xA = 10 = 0b1010

0xB = 11 = 0b1011

0xC = 12 = 0b1100

0xD = 13 = 0b1101

0xE = 14 = 0b1110

0xF = 15 = 0b1111

0x20 = 32

0x28 = 40

0x2A = 42

0x2F = 47

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer
pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack
ret pop return address from stack and jump there

mov move a value between registers and memory
lea compute e↵ective address and store in a register

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)
sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
and bit-wise AND of src and dst with result stored in dst
or bit-wise OR of src and dst with result stored in dst
sar shift data in the dst to the right (arithmetic shift) by the number of bits

specified in 1st operand

jmp jump to address
jne conditional jump to address if zero flag is not set
jns conditional jump to address if sign flag is not set
cmp subtract src (1st operand) from dst (2nd) and set flags
test bit-wise AND src and dst and set flags

15 of 16

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12,
r13, r14, and r15. rsp is a special register.

%rax Return Value %r8 Argument #5

%rbx Callee Saved %r9 Argument #6

%rcx Argument #4 %r10 Caller Saved

%rdx Argument #3 %r11 Caller Saved

%rsi Argument #2 %r12 Callee Saved

%rdi Argument #1 %r13 Callee Saved

%rsp Stack Pointer %r14 Callee Saved

%rbp Callee Saved %r15 Callee Saved

16 of 16

