
CSE 351 Midterm - Spring 2015

May 1, 2015

Please read through the entire examination first! We designed this exam so that it can be completed in 50
minutes and, hopefully, this estimate will prove to be reasonable.

There are 5 problems for a total of 100 points, and one 10 point extra credit problem. The point value
of each problem is indicated in the table below. Write your answer neatly in the spaces provided. If you
need more space, you can write on the back of the sheet where the question is posed, but please make sure
that you indicate clearly the problem to which the comments apply, and that you write your name on all
pages. If you have difficulty with part of a problem, move on to the next one. They are independent of each
other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no mobile phones, no laptops, and
simple calculators only). Please do not ask or provide anything to anyone else in the class during the exam.
Make sure to ask clarification questions early so that both you and the others may benefit as much as possible
from the answers.

Good luck and have fun!

Name: Solution Guide

Student ID:

Problem Max Score Score
1 10
2 20
3 30
4 30
5 10

TOTAL 100
EC 10

1

Name: 1 NUMBER REPRESENTATION(10 POINTS)

1 Number Representation(10 points)

Let x=0xE and y=0x7 be integers stored on a machine with a word size of 4bits. Show your work with the
following math operations. The answers—including truncation—should match those given by our
hypothetical machine with 4-bit registers.

A. (2pt) What hex value is the result of adding these two numbers?

In hex: 0xE + 0x7 = 0x15 → 0x5
In binary converted back to hex: 0xE + 0x7 = 1110 + 0111 = 10101 → 0101 = 0x5
Half credit for not truncating to the appropriate value.

B. (2pt) Interpreting these numbers as unsigned ints, what is the decimal result of adding x + y?

In unsigned decimal: 0xE + 0x7 = 14 + 7 = 21 % 16 = 5
Half credit for not truncating to the appropriate value or incorrect conversion.
No credit for computing in signed decimal

C. (2pt) Interpreting x and y as two’s complement integers, what is the decimal result of computing x−y?

In signed decimal: 0xE - 0x7 =¿ -2 - 7 = -9 → 7
Half credit for not truncating to the appropriate value, or incorrect conversion.
No credit for computing in unsigned decimal

D. (2pt) In one word, what is the phenomenon happening in 1B?

Overflow.

E. (2pt) Circle all statements below that are TRUE on a 32-bit architecture:
Half point each.

• It is possible to lose precision when converting from an int to a float. True

• It is possible to lose precision when converting from a float to an int. True

• It is possible to lose precision when converting from an int into a double. False

• It is possible to lose precision when converting from a double into an int. True

2 of 10

Name: 2 IA32 ASM TO C (20 POINTS)

2 IA32 ASM to C (20 points)

A function ’mystery’ has the following overall structure:

int mystery (int x, int y){

int result;

for (; ; result++){

;

;

}

;

return result;

}

The GCC C compiler generates the following x86 (IA32) assembly code (x is at %ebp+8, y at %ebp+12)

01 pushl %ebp

02 movl %esp, %ebp

03 movl 8(%ebp), %ecx

04 movl 12(%ebp), %edx

05 movl $0, %eax

06 test %ecx, %ecx

07 jz .L3

08 .L6

09 addl %ecx, %edx

10 subl $1, %ecx

11 addl $1, %eax

12 cmpl $0, %ecx

13 jg .L6

14 .L3

15 addl %edx, %eax

16 popl %ebp

17 ret

Fill in the blanks in mystery based on the assembly code above. You may only use the symbolic variables x,
y, and result in your expressions. Do not use register names.
Answers to blanks, in order:

result = 0;

x > 0; // Also accept x != 0

y += x;

x--;

result += y

3 of 10

Name: 3 C TO ASM (30 POINTS)

3 C to ASM (30 points)

Write x86-64 assembly instructions (see the reference sheet for the list of instructions that you can use on
this exam) that might be generated by the following function foo. It may be a good idea to consult the
register chart provided on the reference sheet.

int foo (int a, int b){

int c, d;

c = a / 16;

d = b * 64;

if (c > d)

return a;

else

return b;

}

Place the assembly code for function foo here (you should need fewer than 15 instructions), and a comment
for each line of your code. You may only use the instructions that are on reference sheet!

.FOO

movl %edi, %e10 # (may use another register, but must be 32 bit)

sar $4, $e10 # (no credit for anything other than shift)

movl %esi, %e11 # (may use another register, but must be 32 bit)

shl 6, %e11 # (no credit for anything other than shift)

cmpl %e11, %e10 # (accept opposite order, if next line matches)

jle $.L1 # (two for instruction, 2 for useful label OR arrow OR address)

movl $edi, %eax #

jmp $.END # (also accept ret here instead of jump to end)

.L1

movl %esi, %eax #

.END

ret # (must be present: all control flow must go through a ret)

4 of 10

Name: 4 STACK DISCIPLINE (30 POINTS)

4 Stack Discipline (30 points)

Given the C function

int proc (void){

int a[3];

scanf("%x %x %x", &a[1], &a[0], &a[2]);

return a[2];

}

GCC generates the following code:

01 pushl %ebp

02 movl %esp, %ebp

03 pushl %ebx

04 pushl %esi

05 subl $0x20, %esp

06 leal -20(%ebp), %eax

07 movl $0, %esi

08 leal (%eax,%esi, 4), %ebx

09 movl %ebx, 8(%esp)

10 addl $1, %esi

11 leal (%eax,%esi, 4), %ebx

12 movl %ebx, 4(%esp)

13 addl $1, %esi

14 leal (%eax,%esi, 4), %ebx

15 movl %ebx, 12(%esp)

16 movl $.LC0, (%esp) #Pointer to string "%x %x %x"

17 call scanf <== here

18 movl (%ebx), %eax

19 addl $0x20, %esp

20 popl %esi

21 popl %ebx

22 movl %ebp, %esp

23 popl %ebp

24 ret

Draw a picture depicting the stack frame of proc immediately before the call to scanf (labeled ”here”
above). Draw labeled arrows indicating where the stack and frame pointers are. If needed, you can assume
that %esp = 0x800040 and %ebp = 0x800060 just before proc is called. The next page is left blank to give
you more room.

Note: though not necessary to solve the problem, scanf is much like the sscanf you saw in Lab 2
(matching an input string to some format), except it reads the input string from stdin (the terminal).

5 of 10

Name: 4 STACK DISCIPLINE (30 POINTS)

Address Value Comment

0x800040 ?? where %esp used to point

0x80003C ?? ret addr

0x800038 0x800060 old ebp <-- ebp

0x800034 ?? saved ebx

0x800030 ?? saved esi

0x80002C ?? a[2]

0x800028 ?? a[1]

0x800024 ?? a[0]

0x800020 -- wasted space

0x80001C 0x80002C &a[2]

0x800018 0x800024 &a[0]

0x800014 0x800028 &a[1]

0x800010 ?? $.LC0 (pointer to format string) <-- esp

Grading Notes:

First two lines in table are optional. Need to have the other 11.

Comment column and pointer columns are required. Address and value are optional

If addresses are used, they must increment by the correct values

Any values provided &a[0],&a[1],&a[2],old ebp, must be correct

6 of 10

Name: 5 STRUCTS (10 POINTS)

5 Structs (10 points)

Suppose you are given the following struct definition for an x86-64 architecture which is used to implement
a linked list of all tweets in Katelin’s SuperTwitter implementation.

typedef struct Super_Tweet{

char super_tweeter[21];

int num_retweets;

int num_favorites;

long id;

tweet* next;

int datetime_encoded; //seconds since SuperTwitter was launched

} tweet

A. (1/2pt each) Given the above definition, fill in the following table:

Field Name Offset Size of Field (bytes)

super tweeter 0 21

(wasted space) 21 3

num retweets 24 4

num favorites 28 4

id 32 8

next 40 8

datetime encoded 48 4

(wasted space) 52 4

B. (1pt) What is the size of the struct? 56 bytes

C. (1/2pt) How much internal fragmentation does this struct have? 3 bytes.

D. (1/2pt)How much external fragmentation does this struct have? 4 bytes.

7 of 10

Name: 6 ARRAYS (10 POINTS, EXTRA CREDIT)

6 Arrays (10 points, extra credit)

In the space below, draw the memory layout on a 32-bit machine for:

char a[2][3] = {{’a’, ’b’, ’c’}, {’d’,’e’,’f’}}

Half point, each box, +1 for correct ordering

0x00 ’a’ ’b’ ’c’ ’d’

0x04 ’e’ ’f’

0x08

0x0C

0x10

0x14

0x18

0x1C

char *b[2] = {"foo", "bar"};

Hint: you may place ”foo” and ”bar” somewhere in memory, to get an address.
Half point, each character box, 1 point each pointer. Solution assumes little endian, big endian also okay.

0x00

0x04 ’f’ ’o’ ’o’ ’\0’

0x08

0x0C

0x10 ’b’ ’a’ ’r’ ’\0’

0x14

0x18 04 00 00 00

0x1C 10 00 00 00

8 of 10

References

Powers of 2:

20 = 1
21 = 2 2−1 = 0.5
22 = 4 2−2 = 0.25
23 = 8 2−3 = 0.125
24 = 16 2−4 = 0.0625
25 = 32 2−5 = 0.03125
26 = 64 2−6 = 0.015625
27 = 128 2−7 = 0.0078125
28 = 256 2−8 = 0.00390625
29 = 512 2−9 = 0.001953125
210 = 1024 2−10 = 0.0009765625

Hex help:

0x00 = 0

0x0A = 10

0x0F = 15

0x20 = 32

0x28 = 40

0x2A = 42

0x2F = 47

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)

sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic) by the number in 1st operand

shl shift data in the dst to the left by the number of bits specified in 1st operand

jmp jump to address

jg conditional jump to address if not zero flag and not sign flag

jle conditional jump to address if zero flag or sign flag

jne conditional jump to address if zero flag is not set

jns conditional jump to address if sign flag is not set

cmp subtract src (1st operand) from dst (2nd) and set flags

test bit-wise AND src and dst and set flags

9 of 10

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12,
r13, r14, and r15. rsp is a special register.

%rax Return Value %r8 Argument #5

%rbx Callee Saved %r9 Argument #6

%rcx Argument #4 %r10 Caller Saved

%rdx Argument #3 %r11 Caller Saved

%rsi Argument #2 %r12 Callee Saved

%rdi Argument #1 %r13 Callee Saved

%rsp Stack Pointer %r14 Callee Saved

%rbp Callee Saved %r15 Callee Saved

10 of 10

