
 1 of 12

CSE 351 Autumn 2015 – Midterm Exam (4 November 2015)

Please read through the entire examination first! We designed this exam so that it can be

completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 5 problems for a total of 95 points. The point value of each problem is indicated in the

table below. Write your answer neatly in the spaces provided. If you need more space, you can

write on the back of the sheet where the question is posed, but please make sure that you indicate

clearly the problem to which the comments apply. If you have difficulty with part of a problem,

move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile

phones, no laptops). Please do not ask or provide anything to anyone else in the class during the

exam. Make sure to ask clarification questions early so that both you and the others may benefit as

much as possible from the answers.

Good Luck!

Name (as it appears on your ID):__Sample Solution __________

Student Number:__________________________

UWNet ID:__________________________

Problem Max Score Score

1 25

2 10

3 10

4 20

5 30

TOTAL 95

 2 of 12

1. Integers and Floats (25 points total)

A. (21 points) Given the following declarations:

int x1 = …; // x1 > 0

int x2 = …; // x2 < 0

float f = …;

double d1 = …;

double d2 = …;

Assume neither d1, d2nor f is NaN.

For each of the following, indicate if it is TRUE for all possible values of the given variables

(note that x1 and x2 have specific ranges). If not, select FALSE and give a BRIEF one

sentence justification for your answer– BE SPECIFIC. You do not need to give a

justification for true answers.

 Circle One

1) d1 == (double)(float) d1 TRUE FALSE

Float cannot represent as much precision or range as double.

2) x1 == (int)(float) x1 TRUE FALSE

Float only has 23 bits for precision vs. 32 bits in int

3) x2 == (int)(double) x2 TRUE FALSE

4) d1 == -(-d1) TRUE FALSE

Note: this just requires flipping the sign bit twice.

5) (d1 + d2) - d1 == d2 TRUE FALSE

Floating point operations are not associative. If d1 is very big

and d2 is very small, then we might “lose” d2 when adding it to

d1. d1 + d2 could also overflow and become NaN.

6) x1 + x2 will never overflow TRUE FALSE

Note: x1 > 0, x2 < 0

7) f == (float)(double) f TRUE FALSE

Note: order of questions was

different on different exams.

 3 of 12

B. (4 points) What is the largest positive number we can represent with a 10-bit signed two’s

complement integer?

Bit pattern in binary:

01 1111 1111

Value in decimal:

2
8
 + … + 2

0
 = 2

9
 – 1 = 512 -1 = 511

 4 of 12

2. C to Assembly (10 points)

Given the following C function:

long happy(long *x, long y, long z) {

 if (y > z)

 return z + y;

 else

 return *x;

}

Write x86-64 bit assembly code for this function here. Comments are not required but could

help for partial credit. We are not judging you on the efficiency of your code, just the

correctness. It is fine to leave off the size suffixes if you prefer to (e.g. b, w, l, q).

happy:

 cmp %rdx, %rsi # y:z

 jle .else

 leaq (%rsi, %rdx), %rax # y > z %rax = z + y

 ret

.else:

 movq (%rdi), %rax # y <= z %rax = *x

 ret

Also fine to swap the if and else clauses:

happy:

 cmp %rdx, %rsi # y:z

 jg .else

 movq (%rdi), %rax # y <= z %rax = *x

 ret

.else:

 leaq (%rsi, %rdx), %rax # y > z %rax = z + y

 ret

 5 of 12

3. C to Assembly (10 points)

Given the following C function:

long silly(long *z, long index){

 z = z + 2;

 return z[index] - 5;

}

Write x86-64 bit assembly code for this function here. Comments are not required but could

help for partial credit. We are not judging you on the efficiency of your code, just the

correctness. It is fine to leave off the size suffixes if you prefer to (e.g. b, w, l, q).

silly:

 movq 16(%rdi, %rsi, 8), %rax

 subq $5, %rax

 ret

Fine to do this with more instructions.

 6 of 12

4. Assembly to C (20 points)

Given the C code for the function sunny(), determine which x86-64 code snippet corresponds to

a correct implementation of sunny ().

long sunny(long *z, long counter){

 long temp = *z;
 while (counter > 1) {

 temp = temp * 8;

 counter--;

 }

 return temp;

}

Circle all of the x86-64 implementations below that correctly implement sunny() (there could

be more than one). For implementations that are not correct give at least one reason why it is not

correct. (You do not need to give reasons why the correct ones are correct.)

a) movq (%rdi), %rax

 jmp .L10

.L11:

 leaq 8(%rax), %rax

.L10:

 subq $1, %rsi

 jg .L11

 rep ret

If Incorrect, give Reason:

- Adds 8 instead of multiplying.

b)

 movq (%rdi), %rax

 jmp .L10

.L11:

 salq $3, %rax

 subq $1, %rsi

.L10:

 cmpq $1, %rsi

 jg .L11

 rep ret

If Incorrect, give Reason:

Circle One:

Correct Incorrect

Circle One:

Correct Incorrect

Note: order of questions was

different on different exams.

 7 of 12

c)

 movq %rdi, %rax

 jmp .L10

.L11:

 salq $3, %rax

 subq $1, %rsi

.L10:

 cmpq $1, %rsi

 jg .L11

 rep ret

If Incorrect, give Reason:

First movq needs to put *z, not z into rax.

d)

 movq (%rdi), %rax

.L11: cmpq $1, %rsi

 jle .L10

 leaq (,%rax,8), %rax

 subq $1, %rsi

 jmp .L11

.L10:

 rep ret

If Incorrect, give Reason:

e)

 leaq (%rdi), %rax

 jmp .L10

.L11:

 salq $3, %rax

 subq $1, %rsi

.L10:

 cmpq $1, %rsi

 jg .L11

 rep ret

If Incorrect, give Reason:

First instruction should be movq, not leaq. Needs to move *z not &z into rax.

Circle One:

Correct Incorrect

Circle One:

Correct Incorrect

Circle One:

Correct Incorrect

 8 of 12

5. Stack Discipline (30 points)

Examine the following recursive function:

long magic(long x, long *y) {

 long temp;

 if (x < 2) {

 return *y;

 } else {

 temp = *y + 1;

 return x + magic(x-3, &temp);

 }

}

Here is the x86_64 assembly for the same function:

4005f6 <magic>:

4005f6: cmp $0x1,%rdi

4005fa: jg 0x400600 <magic+10>

4005fc: mov (%rsi),%rax

4005ff: retq

400600: push %rbx

400601: sub $0x10,%rsp

400605: mov %rdi,%rbx

400608: mov (%rsi),%rax

40060b: add $0x1,%rax

40060f: mov %rax,0x8(%rsp)

400614: lea -0x3(%rdi),%rdi

400618: lea 0x8(%rsp),%rsi

40061d: callq 0x4005f6 <magic>

400622: add %rbx,%rax

400625: add $0x10,%rsp

400629: pop %rbx

40062a: retq

Suppose we call magic from main(), with registers %rsi = 0x7ff…ffbaa and %rdi = 7.

The value stored at address 0x7ff…ffbaa is the long value 3. We set a breakpoint at “return

*y” (i.e. we are just about to return from magic() without making another recursive call). We

have executed the mov instruction at 4005fc but have not yet executed the retq.

Fill in the register values on the next page and draw what the stack will look like when the

program hits that breakpoint. Give both a description of the item stored at that location and the

value stored at that location. If a location on the stack is not used, write “unused” in the

Description for that address and put “-----” for its Value. You may list the Values in hex or

decimal. Unless preceded by 0x we will assume decimal. It is fine to use f…f for sequences of

f’s as shown above for %rsi. Add more rows to the table as needed. Also, fill in the box on the

next page to include the value this call to magic will finally return to main.

 9 of 12

 Version 1

Register Original Value Value at Breakpoint

rsp 0x7ff…ffad0 0x7ffffffffffffa90

rdi 7 1

rsi 0x7ff…ffbaa 0x7ffffffffffffaa0

rbx 2 4

rax 9 5

Memory address on stack Name/description of item Value

0x7ffffffffffffad0 Return address back to main 0x400827

0x7ffffffffffffac8 Old rbx 2

0x7ffffffffffffac0 temp 4

0x7ffffffffffffab8 Unused -------

0x7ffffffffffffab0 Return address 0x400622

0x7ffffffffffffaa8 Old rbx 7

0x7ffffffffffffaa0 temp 5

0x7ffffffffffffa98 Unused -------

0x7ffffffffffffa90 Return address 0x400622

0x7ffffffffffffa88

0x7ffffffffffffa80

0x7ffffffffffffa78

0x7ffffffffffffa70

0x7ffffffffffffa68

0x7ffffffffffffa60

What value is finally returned to main by this call?

DON’T

FORGET
16

 10 of 12

Version 2

Register Original Value Value at Breakpoint

rsp 0x7ff…ffad0 0x7ffffffffffffa90

rdi 6 0

rsi 0x7ff…ffbaa 0x7ffffffffffffaa0

rbx 1 3

rax 8 4

Memory address on stack Name/description of item Value

0x7ffffffffffffad0 Return address back to main 0x400827

0x7ffffffffffffac8 Old rbx 1

0x7ffffffffffffac0 temp 3

0x7ffffffffffffab8 Unused -------

0x7ffffffffffffab0 Return address 0x400622

0x7ffffffffffffaa8 Old rbx 6

0x7ffffffffffffaa0 temp 4

0x7ffffffffffffa98 Unused -------

0x7ffffffffffffa90 Return address 0x400622

0x7ffffffffffffa88

0x7ffffffffffffa80

0x7ffffffffffffa78

0x7ffffffffffffa70

0x7ffffffffffffa68

0x7ffffffffffffa60

What value is finally returned to main by this call?

DON’T

FORGET
13

 11 of 12

REFERENCES

Powers of 2:

2
0
 = 1

2
1
 = 2 2

-1
 = .5

2
2
 = 4 2

-2
 = .25

2
3
 = 8 2

-3
 = .125

2
4
 = 16 2

-4
 = .0625

2
5
 = 32 2

-5
 = .03125

2
6
 = 64 2

-6
 = .015625

2
7
 = 128 2

-7
 = .0078125

2
8
 = 256 2

-8
 = .00390625

2
9
 = 512 2

-9
 = .001953125

2
10

 = 1024 2
-10

 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1
st
 operand) to dst (2

nd
) with result stored in dst (2

nd
)

sub subtract src (1
st
 operand) from dst (2

nd
) with result stored in dst (2

nd
)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift)

by the number of bits specified in 1
st
 operand

sal shift data in the dst to the left (arithmetic shift)

by the number of bits specified in 1
st
 operand

jmp jump to address

jg conditional jump to address if greater than

jle conditional jump to address if less than or equal

jne conditional jump to address if zero flag is not set

cmp subtract src (1
st
 operand) from dst (2

nd
) and set flags

test bit-wise AND src and dst and set flags

 12 of 12

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx,

rbp, r12, r13, r14, and r15. rsp is a special register.

