
 1 of 17

CSE351 Autumn 2015 – Final Exam (16 Dec 2015)

Please read through the entire examination first! We designed this exam so that it can be

completed in 110 minutes and, hopefully, this estimate will prove to be reasonable.

There are 10 problems for a total of 100 points. The point value of each problem is indicated

in the table below. Write your answer neatly in the spaces provided. If you need more space,

you can write on the back of the sheet where the question is posed, but please make sure that

you indicate clearly the problem to which the comments apply. If you have difficulty with

part of a problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no

mobile phones, no laptops). Please do not ask or provide anything to anyone else in the class

during the exam. Make sure to ask clarification questions early so that both you and the

others may benefit as much as possible from the answers.

POINTS WILL BE DEDUCTED if you are writing/erasing after the final bell has rung!

Good Luck!

Name (as it appears on your ID):__________________________

Student Number:__________________________

UWNet ID:__________________________

Problem Max Score Score

1 (Potpourri) 10

2 (Caches) 6

3 (Caches & Structs) 12

4 (Virtual Memory) 10

5 (Processes) 10

6 (Memory Allocation) 10

7 (Java) 10

8 (Variety Pack) 14

9 (Assembly) 10

10 (C Pointers & Structs) 8

TOTAL 100

 2 of 17

1. Potpourri! True/False (10 total, 1 pt each)

 True False

A. On a write hit, a cache that is write-back will immediately write

a value from the cache back to memory.

B. Casting a C int into a float will lose precision.

C. The number of entries in a jump table for a switch statement will

be equal to the number of cases listed plus one for the default

case.

D. To maximize temporal locality, it is best to access array

elements with a stride 1 access pattern.

E. An x86 program which uses lea instructions can be translated to

a functionally equivalent version (without accounting for

performance) which does not use any lea instructions.

F. Increasing the associativity of a cache is the best way to improve

the hit rate when accessing values from an array in order.

G. If we were to reverse the direction that the program stack grows,

stack based buffer overflows would no longer work.

H. Reading memory from the heap is slower than reading from a

local variable allocated on the stack.

I. The Java Virtual Machine reads in instructions written in Java

and translates them into Java bytecodes.

J. In C, casting a variable from a char* to a float* will not change

the bit pattern stored there.

 3 of 17

2. Caches – 6 pts

Given the following 2-way set-associative cache and its contents in a system with a 12-bit

address:

Index Tag V B0 B1 B2 B3 B4 B5 B6 B7 Tag V B0 B1 B2 B3 B4 B5 B6 B7

0 07 1 99 1F 34 56 99 1F 34 56 11 1 DE AD BE EF DE AD BE EF

1 03 1 27 A4 C5 23 00 00 00 01 1C 1 1F 2E 11 09 1F 2E 11 09

2 01 1 54 21 65 78 54 21 65 78 0F 0 CA FE 12 34 CA FE 12 34

3 0F 1 01 02 03 04 05 06 07 08 1C 0 12 34 56 78 13 24 57 68

4 21 1 17 C4 35 43 01 30 05 21 26 1 00 35 2A 2E F8 E9 A1 95

5 03 1 A7 B4 D5 E3 F0 A0 B0 00 1C 1 2F 3E 44 68 2F 6E 71 55

6 02 0 27 A4 C5 23 00 40 02 01 2E 1 10 25 26 27 28 29 31 99

7 11 0 18 E4 37 73 71 08 95 22 06 1 07 34 AA EE FF E5 BB 77

A. How many bits are used for the tag?

B. How many bits are used for the index?

C. What are the results of the following read operations (specify whether it is a hit or

miss and the value if determinable from the information given, otherwise just write

ND for non-determinable)? Assume the cache uses a LRU replacement policy and

that reads are executed in the order given below (addresses are given in hex).

Address

to be read

Tag

(give bits)

Set

(give bits)

Block Offset

(give bits)

Hit or Miss

(H or M)

Value read

(or ND)

0x30C

0x1BD

 4 of 17

3. Structs & Caches – 12 pts

Given an x86-64 system with a direct mapped, 8-byte block, 256 set cache:

A. How many bytes total are in this cache?

B. How many bits will be required for the cache block offset?

C. If physical addresses are 32 bits, how many bits are in the cache tag?

D. Write C code that will fill every byte in this cache with characters from an array of

sentence structs, each containing an adjective, noun, and verb:

struct sentence {

 char adjective[4];

 char noun[4];

 char verb[4];

};

typedef struct sentence sentence;

See the code on the next page where you should add your instructions. You can assume:

1. The array paragraph (initialized below with fillParagraph()) is a valid array

of 256 sentence structs, each field of each struct is full of chars.

2. The address of the paragraph array maps to the first block of the cache.

3. All variables other than the array paragraph are stored in registers.

4. The cache is flushed (emptied) after the call to fillParagraph().

You can use the function:
 void access(char* c);

to access the cache, passing in fields from the struct.

Here are your requirements:

 Most importantly, fill the cache without EVER accessing the characters in the

noun field of ANY sentence struct. Do not use pointer arithmetic or other

techniques to access the chars in the noun field, you should bring those characters

into the cache without directly accessing them.

 For full credit, your code should make as few calls to access as possible.

 For full credit, your code should stop executing once the cache is full, or the

entire array has been read in, whichever comes first.

 5 of 17

void fillCache() {

 int i;

 sentence paragraph[256];

 // Fill adjective, noun, and verb fields of

 // each sentence with chars.

fillParagraph(¶graph);

// Empty the cache

flushCache();

 // YOUR CODE HERE

}

 6 of 17

4. Virtual Memory – 10 pts

We have a system with the following properties:

 a virtual address of 18 bits,

 a physical address of 15 bits,

 pages that are 32 bytes,

 a corresponding page table, and

 a TLB with 32 entries total that is 4-way set associative.

A. How many bits will be used for the TLB tag (TT)?

B. How many bits will be used for the TLB index (TI)?

C. How many bits will be used for the Physical page number (PPN)?

D. A page table will contain how many entries?

E. Given the Virtual Address: 0x37624

Give the bits for the following:

Virtual page number

(VPN)

TLB tag

(TT)

TLB index

(TI)

Physical page offset

(PPO)

F. Say this is a TLB Miss, what happens next? (If more than one of these may happen

next, give the one that would happen first)

a. Go to physical memory to find the page table

b. Go to the cache to find the page table

c. This is a page fault, the OS will need to do a context switch while it brings the

page in from disk.

G. True/False – It is possible for your process and my process to both access the same

physical page.

 7 of 17

5. Processes – 10 pts

A) What is exec() used for? Give an example of when it is used.

B) On a context switch, circle all of the following that would be saved:

TLB

contents

Stack

Pointer

Instruction

Cache

Contents

Heap

Contents

Register

Contents

Stack

Contents

Condition

Codes

C) Given the following C program:

void sunny() {

int n = 1;

if (fork() == 0) {

 n = n << 1

 printf("%d, ", n);

 n = n << 1

}

if(fork() == 0) {

 n = n + 700;

}

printf("%d, ", n);

};

Which of the following outputs are possible for this function (circle all that apply):

a. 2, 4, 1, 701, 704,

b. 1, 2, 4, 704, 701,

c. 2, 704, 4, 701, 1,

d. 701, 2, 704, 4, 1,

e. 1, 704, 2, 4, 701,

f. 2, 1, 704, 4, 701,

 8 of 17

6. Memory Allocation – 10 pts

Help! Your lab5 files have been corrupted and it looks like the code may not be coalescing

free blocks properly. To track down the problem, you need to implement the findFive()

method which will find the first five blocks in your free list that might need to be coalesced

with their previous block. findFive() scans your free list, and checks each block to see if

the tag bits in its header indicate that the preceding block is free. If it finds a candidate block

whose header bits indicate that its preceding block is free it will:

 Add the size of this block to a running total of the sizes.

 Add a pointer to this block to an array of pointers.

 No blocks in the free list should be modified.

findFive()is passed a pointer to a FirstFive struct that has just been allocated on the

heap using malloc and should update it to contain the info described above. If no such blocks

are found, then the firstFiveTotalBytes field should equal 0, otherwise it should contain

the sum of the sizes of all candidate blocks found, up to a maximum of 5. Unused pointer

fields do not need to be set. findFive() should return as soon as 5 blocks have been found.

You do not need to check that a preceding block has already been added to the list, it is fine to

have two neighboring blocks on your list. See lab 5 code at the end of the exam.

struct FirstFive {

 size_t firstFiveTotalBytes;

 struct BlockInfo* firstFivePtrs[5];

};

typedef struct FirstFive FirstFive;

static void findFive(FirstFive* result) {

BlockInfo * curFreeBlock;

curFreeBlock = FREE_LIST_HEAD;

// INSERT YOUR CODE HERE. SHOULD BE 10-15 LINES.

return;

}

 9 of 17

7. Java – 10 pts

Given the following Java class hierarchy:

And the following additional code:

class FinalExam {

public static void main(String[] args) {

 Car c = new Car(); // line 1

Boat b1 = new Boat(); // line 2

Boat b2 = new Vehicle(); // line 3

Vehicle v = new SailBoat();// line 4

SailBoat sb1 = (SailBoat) b1; // line 5

SailBoat sb2 = (SailBoat) v; // line 6

 }

}

Circle all of the items below that will be true:

i. Line 3 will cause a compiler error.

ii. Line 4 will cause a compiler error.

iii. Line 5 will cause a compiler error.

iv. Line 6 will cause a compiler error.

v. Line 3 will cause a run-time error.

vi. Line 4 will cause a run-time error.

vii. Line 5 will cause a run-time error.

viii. Line 6 will cause a run-time error.

ix. Each object will have a copy of the vtable for that class.

x. Given that no constructor exists for the Car class, the initial value of c.wheels is

unknown

xi. Variable b1 will be on the heap.

class Vehicle {

 int passengers;

}

class Boat extends Vehicle {

 int propellers;

}

class Car extends Vehicle {

 int wheels;

}

class SailBoat extends Boat {

 int sails;

}

 10 of 17

8. Variety Pack – 7 pts this page, 14 pts total

A. (3 pts) Given

int a = 0x0A;

int b = 0x10;

What do the following expressions evaluate to (write your answer in hex):

i. a ^ b __________________

ii. a + b __________________

iii. a | b __________________

B. (2 pts) What will this function print?

void func() {

 int p[6] = {0,1,0,3,0,3};

 if (*(&p[3]) == *(p + 5)) {

 printf("true");

 } else {

 printf("false");

 }

}

Circle one:

true false Compiler Error Run-time Error

C. (2 pts) Given the two vegetarian structs shown below:

struct whopper {

 int buns[2];

 double lettuce;

 short tomato;

 int sauce;

};

struct big_mac {

 short buns[2];

 int lettuce;

 char* pickles;

 short cheese;

};

Draw a circle next to the burger with the most internal fragmentation.

Draw an x next to the burger with the most external fragmentation.

If there is a tie, put the mark next to both of them. If one burger has the most of both

types of fragmentation, put both marks there.

 11 of 17

8. (cont.) 7 pts this page

D. (1 pt) With garbage collection, who identifies objects that you are no longer using and

frees them?

Programmer Compiler Language (Java) Runtime Operating System

E. (1 pt) In C, who determines whether an array is allocated on the stack or the heap?

Programmer Compiler Language (C) Runtime Operating System

F. (1 pt) Who determines what physical page a virtual page maps to?

Programmer Compiler Language (C, Java) Runtime Operating System

G. (2 pts) In C, given a multidimensional array of char* a[4][5], if a starts at address 0, at

what byte address is the element a[3][1]? (Give your address in decimal)

H. (2 pts) If %rax contains 2 and %rdx contains 5, what will be in %rax after the

following instruction is executed (If this contains an error or the value cannot be

determined say so):

leaq 2(%rax,%rdx,4), %rax

 12 of 17

9. C to Assembly (10 points)

Given the following C function:

long snowy(long *a, long i, long max){

 long result = *a;

 while (i < max) {

 result = result * 4;

 i++;

 }

 return result;

}

Write x86-64 bit assembly code for this function here. Comments are not required but

could help for partial credit. We are not judging you on the efficiency of your code, just

the correctness. It is fine to leave off the size suffixes if you prefer to (e.g. b, w, l, q). We

have already filled in part of the code for you below – which you should use. Feel free to

add other labels as needed.

snowy:

while_loop:

 jl <while_loop>

 ret

 13 of 17

10. Pointers, arrays and structs (8 points)

Given the following declarations and code in C, assuming an x86-64 system:

typedef struct foo {

int *x;

char y[4];

double z;

} foo;

foo* a;

foo b;

a = &b;

Fill in the following table. If you cannot tell what the expression evaluates to, write

“UNKNOWN”.

C Expression Evaluates to? Resulting data type

a 0x10000000 foo*

b.y

a->z

&(b.z)

a->x

&(a->y[1])

b.y[2]

*a

&(b.y[6])

 14 of 17

REFERENCES

Powers of 2:

2
0
 = 1

2
1
 = 2 2

-1
 = .5

2
2
 = 4 2

-2
 = .25

2
3
 = 8 2

-3
 = .125

2
4
 = 16 2

-4
 = .0625

2
5
 = 32 2

-5
 = .03125

2
6
 = 64 2

-6
 = .015625

2
7
 = 128 2

-7
 = .0078125

2
8
 = 256 2

-8
 = .00390625

2
9
 = 512 2

-9
 = .001953125

2
10

 = 1024 2
-10

 = .0009765625

Hex Help:

0x0 0000 0

0x1 0001 1

0x2 0010 2

0x3 0011 3

0x4 0100 4

0x5 0101 5

0x6 0110 6

0x7 0111 7

0x8 1000 8

0x9 1001 9

0xa 1010 10

0xb 1011 11

0xc 1100 12

0xd 1101 13

0xe 1110 14

0xf 1111 15

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1
st
 operand) to dst (2

nd
) with result stored in dst (2

nd
)

sub subtract src (1
st
 operand) from dst (2

nd
) with result stored in dst (2

nd
)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift)

by the number of bits specified in 1
st
 operand

sal shift data in the dst to the left (arithmetic shift)

by the number of bits specified in 1
st
 operand

shl shift data in the dst to the left (logical shift) by the number of bits specified in

the 1
st
 operand

jmp jump to address

jg conditional jump to address if greater than

jle conditional jump to address if less than or equal

jne conditional jump to address if zero flag is not set

cmp subtract src (1
st
 operand) from dst (2

nd
) and set flags

test bit-wise AND src and dst and set flags

Suffixes for mov instructions:

s or z for sign-extended or zero-ed, respectively

 15 of 17

Suffixes for all instructions:

b, w, l, or q for byte, word, long, and quad, respectively

 16 of 17

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely,

rbx, rbp, r12, r13, r14, and r15. rsp is a special register.

Reference from Lab 5:

The functions, macros, and structs from lab5. These are all identical to those in the lab. Note

that some of them will not be needed in answering the exam questions.

Structs:

struct BlockInfo {

 // Size of the block (in the high bits) and tags for whether the

 // block and its predecessor in memory are in use. See the SIZE()

 // and TAG macros, below, for more details.

 size_t sizeAndTags;

 // Pointer to the next block in the free list.

 struct BlockInfo* next;

 // Pointer to the previous block in the free list.

 struct BlockInfo* prev;

};

 17 of 17

Macros:

/* Macros for pointer arithmetic to keep other code cleaner. Casting

 to a char* has the effect that pointer arithmetic happens at the

 byte granularity. */

#define UNSCALED_POINTER_ADD …

#define UNSCALED_POINTER_SUB …

/* TAG_USED is the bit mask used in sizeAndTags to mark a block as

 used. */

#define TAG_USED 1

/* TAG_PRECEDING_USED is the bit mask used in sizeAndTags to indicate

 that the block preceding it in memory is used. (used in turn for

 coalescing). If the previous block is not used, we can learn the

 size of the previous block from its boundary tag */

#define TAG_PRECEDING_USED 2;

/* SIZE(blockInfo->sizeAndTags) extracts the size of a 'sizeAndTags'

 field. Also, calling SIZE(size) selects just the higher bits of

 'size' to ensure that 'size' is properly aligned. We align 'size'

 so we can use the low bits of the sizeAndTags field to tag a block

 as free/used, etc, like this:

 sizeAndTags:

 +---+

 | 63 | 62 | 61 | 60 | | 2 | 1 | 0 |

 +---+

 ^ ^

 high bit low bit

 Since ALIGNMENT == 8, we reserve the low 3 bits of sizeAndTags for

 tag bits, and we use bits 3-63 to store the size.

 Bit 0 (2^0 == 1): TAG_USED

 Bit 1 (2^1 == 2): TAG_PRECEDING_USED

*/

#define SIZE …

/* Alignment of blocks returned by mm_malloc. */

define ALIGNMENT 8

/* Size of a word on this architecture. */

define WORD_SIZE 8

/* Minimum block size (to account for size header, next ptr, prev ptr,

 and boundary tag) */

#define MIN_BLOCK_SIZE …

/* Pointer to the first BlockInfo in the free list, the list's head.

 A pointer to the head of the free list in this implementation is

 always stored in the first word in the heap. mem_heap_lo() returns

 a pointer to the first word in the heap, so we cast the result of

 mem_heap_lo() to a BlockInfo** (a pointer to a pointer to

 BlockInfo) and dereference this to get a pointer to the first

 BlockInfo in the free list. */

#define FREE_LIST_HEAD …

