

CSE351 Spring 2014 – Midterm Exam (5 May 2014)

Please read through the entire examination first! We designed this exam so that it can be

completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 5 problems for a total of 90 points. The point value of each problem is indicated in

the table below. Write your answer neatly in the spaces provided. If you need more space

(you shouldn't), you can write on the back of the sheet where the question is posed, but

please make sure that you indicate clearly the problem to which the comments apply. Do

NOT use any other paper to hand in your answers. If you have difficulty with part of a

problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no

mobile phones, no laptops). Please do not ask or provide anything to anyone else in the class

during the exam. Make sure to ask clarification questions early so that both you and the

others may benefit as much as possible from the answers.

Name: ______Solution Key________

ID#: ________________________

Problem Max Score Score

1 15

2 10

3 20

4 30

5 15

TOTAL 100

 2

1. Warm-up (15 points)

A. If we have six (6) bits in which to represent integers, what is largest unsigned number

and what is largest 2s complement number we can represent (in decimal)?

Largest unsigned number: ________63_______

Largest 2s complement number: ________31_______

B. If %eax stores x and %ebx stores y, what do the following lines of assembly compute?

Note that the result is in %eax.

mov %ebx, %ecx

add %eax, %ebx

je .L1

sub %eax, %ecx

je .L1

xor %eax, %eax

jmp .L2

L1:

mov $1, %eax

L2:

…

|x| == |y| or a logical comparison of the absolute values of x and y. The first line merely

copies y so that is can be reused. The second line compute x + y. If the result is 0 then

we jump to L1 (this indicates x and y are negatives of each other) where eax is set to 1

(true). If not, then we compute y – x. Again, if the result is 0 then we jump to L1 (this

indicates x and y have the same positive or same negative values) where %eax is set to 1

(true). If not, then we clear %eax (false) and finally jump around the statement that set

%eax to 1.

 3

2. Floating Point Representation (10 points)

Suppose we have 16-bit floating point numbers where 6 bits are assigned to the exponent and

9 bits to the fraction and 1 to the sign bit.

A. What is the bias for this float?

 Bias = 2 ^ (6-1) – 1 = 31

B. Given the decimal number 3.625, calculate the fraction (frac) and exponent (exp) that

would appear in the floating point representation. (Note: you may leave your answer in

decimal for the exponent.)

3 in binary is 11. The decimal fraction can be represented as a sum of binary fractions.

 0..625

- 0.50000 1/2
1

 0.125

- 0.125000 1/2
3

0.0

Thus, the binary fraction is 0.101. Altogether the mantissa is 11.101. To normalize, we

move the decimal place until there is only a 1 ahead of the decimal point (a value

between 1 and 2), and then drop it as it is implicit in our floating point number

representation. Thus,

frac = 1101

In the process of normalizing, the mantissa was divided by 2^1 (1 binary place), so the

signed exponent (E) is 1. Thus, with

exp = bias + E = bias + 1 = 31 + 1 = 32 = 1000002

 The complete bit pattern for our number is 0 100000 110100000.

 4

3. C and Assembly Code (20 points)

Given the C code for the function foo, determine which IA32 and x86-64 code snippet

corresponds to a correct implementation of foo.

int foo (int x, int y) {

 int c = x << (y + 3);

 if (x != 0) {

 return c;

 } else {

 return 1;

 }

}

 5

A. Which of the following IA-32 implementations is correct for foo()? Circle the correct one

and give at least one reason why the other two are not correct.

i) push %ebp 

mov %esp, %ebp 
mov 0xc(%ebp), %ecx 
add $0x3, %ecx 
mov 0x8(%ebp), %eax 
shl %eax, %ecx

mov %ecx, %eax

cmp $0x8(%ebp), $0

jne $0x808472 // two lines down to leave

mov $0x1, %eax 
leave

ret

ii) push %ebp 
mov %esp, %ebp 
mov 0xc(%ebp), %ecx 
add $0x3, %ecx 
mov 0x8(%ebp), %eax 
shl %ecx, %eax 
cmp $0x8(%ebp), $0 
jne $0x808472 // two lines down to leave
mov $0x1, %eax

leave

ret

iii) push %ebp 
mov %esi, %ecx 
add $0x3, %ecx 
mov %edi, %eax 
shl %ecx, %eax 
test %edi, $0 
jne $0x808472 // two lines down to leave

mov $0x1, %eax

leave 
ret

i) has a logical error that shifts y+3 by x rather than x by y+3.

ii) is the correct implementation.

iii) assumes the arguments are in registers rather than on the stack which is the

x86-64 calling convention.

 6

B. Which of the following x86-64 implementations is correct for foo()? Circle the correct

one and give at least one reason why the other two are not correct.

i) add $0x3, %rsi 

mov %rdi, %rax 
shl %rsi, %rax 
test %rdi, %rdi 
jne $0x808472 // two lines down to leave
mov $0x1, %rax

leave 
ret

ii) push %rbx 
mov %rsi, %rbx 
add $0x3, %rbx 
mov %rdi, %rax 
shl %rbx, %rax 
test %rdi, %rdi 
jne $0x808472 // two lines down to leave
mov $0x1, %rax

leaveq 
ret

iii) mov %rdi, %rdx 
add $0x3, %rdx 
mov %rsi, %rax 
shl %rdx, %rax 
test $0, %rdi
jne $0x808472 // two lines down to leave
mov $0x1, %rax

ret

i) is the correct implementation.

ii) %rbx is not popped from stack at end of procedure and leaveq is used which

is really part of IA32 calling conventions.

iii) the arguments are out of order in the %rdi and %rsi registers, the test

instruction is a bit-wise AND that sets condition codes, by one of the

arguments being $0, the result will always be 0 and the jne conditional jump

will never be taken.

 7

4. Stack Discipline (30 points)

The following function recursively computes the greatest common divisor of the integers a,

b:

int gcd(int a, int b) {

if (b == 0) {

return a;

} else {

return gcd(b, a % b);

}

}

Here is the x86_64 assembly for the same function:

4006c6 <gcd>:

4006c6: sub $0x18, %rsp

4006ca: mov %edi, 0x10(%rsp)

4006ce: mov %esi, 0x08(%rsp)

4006d2: cmpl $0x0, %esi

4006d7: jne 4006df <gcd+0x19>

4006d9: mov 0x10(%rsp), %eax

4006dd: jmp 4006f5 <gcd+0x2f>

4006df: mov 0x10(%rsp), %eax

4006e3: cltd

4006e4: idivl 0x08(%rsp)

4006e8: mov 0x08(%rsp), %eax

4006ec: mov %edx, %esi

4006ee: mov %eax, %edi

4006f0: callq 4006c6 <gcd>

4006f5: add $0x18, %rsp

4006f9: retq

Note: cltd is an instruction that sign extends %eax into %edx to form the 64-bit signed

value represented by the concatenation of [%edx | %eax].

Note: idivl <mem> is an instruction divides the 64-bit value [%edx | %eax] by the long

stored at <mem>, storing the quotient in %eax and the remainder in %edx.

 8

A. Suppose we call gcd(144, 64) from another function (i.e. main()), and set a breakpoint

just before the statement “return a”. When the program hits that breakpoint, what will the

stack look like, starting at the top of the stack and going all the way down to the saved

instruction address in main()? Label all return addresses as "ret addr", label local

variables, and leave all unused space blank.

Memory address on stack Value (8 bytes per line)

0x7ffffffffffffad0 Return address back to main
<-%rsp points here at

start of procedure

0x7ffffffffffffac8
1st of 3 local variables on stack

(argument a = 144)

0x7ffffffffffffac0
2nd of 3 local variables on stack

(argument b = 64)

0x7ffffffffffffab8
3rd of 3 local variables on stack

(unused)

0x7ffffffffffffab0
Return address back

to gcd(144, 64)

0x7ffffffffffffaa8
1st of 3 local variables on stack

(argument a = 64)

0x7ffffffffffffaa0
2nd of 3 local variables on stack

(argument b = 16)

0x7ffffffffffffa98
3rd of 3 local variables on stack

(unused)

0x7ffffffffffffa90
Return address back

to gcd(64,16)

0x7ffffffffffffa88
1st of 3 local variables on stack

(argument a = 16)

0x7ffffffffffffa80
2nd of 3 local variables on stack

(argument b = 0)

0x7ffffffffffffa78
3rd of 3 local variables on stack

(unused)
<-%rsp at “return a”

in 3
rd

 recursive call

0x7ffffffffffffa70

 9

B. How many total bytes of local stack space are created in each frame (in decimal)?

 ______32_______ 24 allocated explicitly and 8 for the return address.

C. When the function begins, where are the arguments (a, b) stored?

 They are stored in the registers %rdi and %rsi, respectively.

D. From a memory-usage perspective, why are iterative algorithms generally preferred over

recursive algorithms?

Recursive algorithm continue to grow the stack for the maximum number of recursions

which may be hard to estimate.

 10

5. Structs (15 points)

A. Draw a picture of the following struct, specifying the byte offset of each of the struct's

fields and the size of any areas of fragmentation. Assume a 64-bit architecture.

typedef struct blah {

 char b;

 int l;

 char *a;

 char h;

} blahblahblah;

b l a h

0 4 8 16 17 24

B. How many bytes of internal fragmentation does the struct contain? External

fragmentation?

Intenal fragmentation:____ 3 bytes after b____

External fragmentation:____ 7 bytes after h____

 11

C. Reorder the fields of the struct to minimize fragmentation:

typedef struct blah {

 _____________ char *a;

 _____________ int l;

 _____________ char b;

 _____________ char h;

} blahblahblah;

D. What is the size of the reordered struct (including external fragmentation)?

_____16 bytes_____

E. How many bytes of internal fragmentation does the struct contain? External?

Intenal fragmentation:____ none________

External fragmentation:____ 2 bytes after h____

 12

REFERENCES

Powers of 2:

2
0
 = 1

2
1
 = 2 2

-1
 = .5

2
2
 = 4 2

-2
 = .25

2
3
 = 8 2

-3
 = .125

2
4
 = 16 2

-4
 = .0625

2
5
 = 32 2

-5
 = .03125

2
6
 = 64 2

-6
 = .015625

2
7
 = 128 2

-7
 = .0078125

2
8
 = 256 2

-8
 = .00390625

2
9
 = 512 2

-9
 = .001953125

2
10

 = 1024 2
-10

 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1
st
 operand) to dst (2

nd
) with result stored in dst (2

nd
)

sub subtract src (1
st
 operand) from dst (2

nd
) with result stored in dst (2

nd
)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift)

by the number of bits specified in 1
st
 operand

jmp jump to address

jne conditional jump to address if zero flag is not set

cmp subtract src (1
st
 operand) from dst (2

nd
) and set flags

test bit-wise AND src and dst and set flags

 13

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely,

rbx, rbp, r12, r13, r14, and r15. rsp is a special register.

