
CSE351 Spring 2014 – Final Exam (11 June 2014)

Please read through the entire examination first! We designed this exam so that it can be
completed in the 110 minutes we have scheduled and, hopefully, this estimate will prove
to be reasonable.

There are 6 problems for a total of 220 points. The point value of each problem is
indicated in the table below and at every part of every problem. Write your answer neatly
in the spaces provided. If you need more space (you shouldn't), you can write on the
back of the sheet where the question is posed, but please make sure that you indicate
clearly the problem to which the comments apply. Do NOT use any other paper to hand
in your answers. If you have difficulty with part of a problem, move on to the next one.
They are independent of each other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Name: ___________________ ____

ID#: ________________________

Problem Max Score Score
1 (Potpourri) 30

2 (Stacks) 30
3 (Caches) 40

4 (Virtual Memory) 40
5 (Memory Allocation) 70

6 (Java) 10
TOTAL 220

1. Potpourri (True/False Answers) – 30pts total (2pts each)
A. A 2s-complement 2-byte integer can be copied into a 32-bit register using the

movzwl instruction.
 ! True ! False

B. On a 64-bit architecture, casting a C long int to a double does not lose precision.
 ! True ! False

C. A logical shift of a 2s-complement number by 3 bits to the right (>> 3) is the
same as dividing by 8.
 ! True ! False

D. In C, the length of string is always in an int at the starting address of the string.
 ! True ! False

E. In both C and Java it is possible to determine the address of a struct/object within
an array of structs/objects.
 ! True ! False

F. Total internal fragmentation in a struct can’t be more than its largest element.
 ! True ! False

G. An instruction cache takes advantage of both spatial and temporal locality.
 ! True ! False

H. To be able to write a correct program, a developer needs to know cache sizes.
 ! True ! False

I. Caches copy frequently used memory to faster storage to speed-up execution.
 ! True ! False

J. On a 32-bit architecture, if a cache block is 128 bytes, and there are 1024 sets in
the cache, the tag will be 17 bits.
 ! True ! False

K. A process’s stack is typically in a segment of memory that is not executable.
 ! True ! False

L. When executing a fork, a child process is given the same process ID as its parent.
 ! True ! False

M. A TLB is used in an MMU to cache page table entries.
 ! True ! False

N. A parent process and its children share the same memory address space.
 ! True ! False

O. C generally has better performance than Java.
 ! True ! False

2. Stacks – 30 pts total (5/A, 5/B, 5/C, 15/D)

You are running a program on a 64-bit architecture, that uses stack frames to hold local
variables but passes arguments in registers. Assume integers are 4 bytes and pointers are
8 bytes.

The program includes the definition for a data_structure type:

typedef struct data_struct {
 int a;
 int *b;
 int c;
} data_struct;

as well as the definition of a print_structure function:

void print_struct(data_struct *y) {
 printf("%p\n", y);
 printf("%d\n", *(y->b + y->c));
<<execution is suspended here>>
}

This is a small snippet of code corresponding to foo, which has just been called and in
turns calls print_struct:

int foo() {
 data_struct x;
 int n = 13;
 x.a = ???;
 x.b = &n;
 x.c = 3;
 print_struct(&x);
}

Execution is suspended after the printf statements in print_struct but before it
returns to foo. The stack at this point of the execution of the program is shown below in
4-byte blocks (note that the stack is shown as is tradition, from bottom to top, with the
top-most of the stack at the bottom or lowest address):

0x7fffffffffffa038: 0x00203748
0x7fffffffffffa034: 0x00000001
0x7fffffffffffa030: 0x0000015f
0x7fffffffffffa02c: 0x00000000
0x7fffffffffffa028: 0x00402741
0x7fffffffffffa024: 0x0000000d
0x7fffffffffffa020: 0x00000003
0x7fffffffffffa01c: 0x7fffffff
0x7fffffffffffa018: 0xffffa024
0x7fffffffffffa014: 0x00000007
0x7fffffffffffa010: 0x00000000
0x7fffffffffffa00c: 0x00402053

A. What is the value stored in the stack at the 8-bytes starting at location
0x7fffffffffffa00c to 0x7fffffffffffa013 and what does it
represent?

B. What value was assigned to x.a in the function foo and at what address is it
stored on the stack?

C. What will the call to print_struct output?
(Note: the “%p” and “%d” format specifiers print the value of a pointer in hex and
the value of an int in decimal notation, respectively.)

D. The argument &x to print_struct is stored in register %rdi when
print_struct is called. What are succinct assembly language instructions to
obtain the value printed in the second statement of print_struct, namely,
*(y->b + y->c), and place it %rdi for the call to printf?

3. Caches – 40pts total (5/A, 5/B, 5/C, 25/D)

A. If a cache has a block size of 128 bytes, what is the miss rate we expect in a row-
major sequential traversal of an array of 16-byte structs (assume we make four
accesses to each struct)?

B. How many sets are there in a 64K cache that is 4-way set associative and has a
block size of 64 bytes? If the address size is 32 bits, how many bits are in the tag?

C. What are the two types of locality that make caches work well? Describe each in
one sentence.

D. Given the following 2-way set-associative cache and its contents in a system with

a 12-bit address:

Index	
 Tag	
 V	
 B0	
 B1	
 	
 B2	
 	
 B3	
 B4	
 B5	
 	
 B6	
 	
 B7	
 Tag	
 V	
 B0	
 B1	
 	
 B2	
 	
 B3	
 B4	
 B5	
 	
 B6	
 	
 B7	

0	
 2F	
 1	
 99	
 1F	
 34	
 56	
 99	
 1F	
 34	
 56	
 11	
 1	
 DE	
 AD	
 BE	
 EF	
 DE	
 AD	
 BE	
 EF	

1	
 2C	
 0	
 27	
 A4	
 C5	
 23	
 00	
 00	
 00	
 01	
 22	
 0	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	

2	
 01	
 1	
 54	
 21	
 65	
 78	
 54	
 21	
 65	
 78	
 3F	
 0	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 BF	

3	
 0F	
 1	
 01	
 02	
 03	
 04	
 05	
 06	
 07	
 08	
 12	
 1	
 CA	
 FE	
 12	
 34	
 CA	
 FE	
 12	
 34	

4	
 36	
 1	
 3E	
 DE	
 AD	
 0F	
 3E	
 DE	
 AD	
 0F	
 34	
 0	
 FF	
 FF	
 FF	
 F4	
 FF	
 FF	
 FF	
 FE	

5	
 3D	
 0	
 7F	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 23	
 1	
 1F	
 2E	
 11	
 09	
 1F	
 2E	
 11	
 09	

6	
 23	
 1	
 12	
 5E	
 67	
 90	
 12	
 5E	
 67	
 90	
 12	
 0	
 00	
 00	
 00	
 01	
 00	
 00	
 00	
 02	

7	
 13	
 0	
 00	
 00	
 00	
 00	
 00	
 40	
 20	
 60	
 0F	
 1	
 12	
 34	
 56	
 78	
 13	
 24	
 57	
 68	

Label the bits of the address with whether they are used as a block offset (CO), set
index (CI) or tag (CT).

11 10 9 8 7 6 5 4 3 2 1 0

What are the results of the following read operations (specify whether it is a hit or
miss and the value if is determinable from the information given, otherwise just
write ND for non-determinable)? Assume the reads are executed in the order
given below and the addresses are given in hex.

Address
to be read

Tag Set Byte Hit or Miss
(H or M)

Value read
(or ND)

0xBC4 10 1111 000 100
0x498
0x358
0x398
0x498
0x4FD
0x8EA

4. Virtual Memory – 40pts total (5/A, 5/B, 5/C, 25/D)

We have a system with the following properties:

• a virtual address of 16 bits (4 hex digits),
• a physical address of 11 bits (3 hex digits),
• pages that are 128 bytes,
• a corresponding page table with 512 entries, and
• a TLB with 16 entries that is 4-way set associative.

The current contents of the TLB and Page Table are shown below:

TLB

Set	
 	
 Tag	
 	
 PPN	
 Valid	
 	
 Tag	
 	
 PPN	
 Valid	
 	
 Tag	
 	
 PPN	
 Valid	
 	
 Tag	
 	
 PPN	
 Valid	
 	

0	
 03	
 -­‐	
 0	
 07	
 0	
 1	
 06	
 -­‐	
 0	
 3F	
 3	
 1	

1	
 05	
 3	
 1	
 0A	
 -­‐	
 0	
 00	
 B	
 1	
 01	
 F	
 1	

2	
 07	
 -­‐	
 0	
 0B	
 -­‐	
 0	
 0F	
 2	
 1	
 2B	
 -­‐	
 0	

3	
 01	
 C	
 1	
 0C	
 1	
 1	
 02	
 0	
 0	
 1A	
 1	
 1	

Page Table (only first 16 of the 512 PTEs are shown)

VPN	
 PPN	
 Valid	
 VPN	
 PPN	
 Valid	
 VPN	
 PPN	
 Valid	
 VPN	
 PPN	
 Valid	

000	
 3	
 1	
 004	
 -­‐	
 0	
 008	
 3	
 1	
 00C	
 F	
 1	

001	
 6	
 1	
 005	
 -­‐	
 0	
 009	
 -­‐	
 0	
 00D	
 -­‐	
 0	

002	
 3	
 1	
 006	
 -­‐	
 0	
 00A	
 1	
 1	
 00E	
 6	
 1	

003	
 3	
 1	
 007	
 -­‐	
 0	
 00B	
 3	
 1	
 00F	
 A	
 1	

A. Specify which bits correspond to the components of the 16-bit virtual address,
namely, the virtual page number (VPN) and the virtual page offset (VPO) by
placing “VPN” or “VPO” in each cell.

15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

B. Now do the same for the TLB by identifying the bits that are used for the TLB set
index and the TLB tag, use the labels “TI” and “TT”, respectively. Leave any
other bits blank.

15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

C. Working with the 11-bit physical address, specify which bits correspond to the
physical page number (PPN) and the physical page offset (PPO) by using “PPN”
and “PPO” labels in each cell.

10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

D. Determine the physical address, TLB miss or hit, and whether there a page fault
for the following virtual address accesses (write “Y” or “N” for yes or no,
respectively, in the TLB Miss? And Page Fault? columns). If you can’t determine
the PPN and/or physical address and/or TLB miss and/or Page Faulty, simply
write ND (for non-determinable) in the appropriate entry in the table.

Virtual	

Address	

VPN	
 TT	
 TI	
 PPN	

Physical	

Address	

TLB	

Miss?	

Page	

Fault?	

0x1F6A	
 000111110	
 0x0F	
 2	
 	
 	
 	
 	

0x0EC2	
 	
 	
 	
 	
 	
 	
 	

0x05FF	
 	
 	
 	
 	
 	
 	
 	

0x0C00	
 	
 	
 	
 	
 	
 	
 	

5. Memory Allocation – 70pts total (20/A, 20/B, 20/C, 10/D)

A. The following is a map of the heap just after a block was freed and added to the
free list. The head of the free list starts at address 0x…a070. Place a check in the
“Part of Free Block” column if the 8 bytes represented in that are part of a free
block. Place a check mark in the “Size and Tags” column if that row represents a
boundary tag for either an allocated or free block.

Address	
 Original	
 Data	
 Part	
 of	
 	

Free	
 Block	

Size	
 	

and	
 Tags	

Modified	
 Data	

0x…a128: 00000000 00000008
0x…a120: 00000eee 00000006
0x…a118: 00000000 00000005
0x…a110: 00000000 00000004
0x…a108: 00000000 00000003
0x…a100: 00000000 00000002
0x…a0f8: 00000ccc 00000001
0x…a0f0: 00000000 00000041
0x…a0e8: 00000000 00000032
0x…a0e0: 00000000 00000004
0x…a0d8: 00000000 00000003
0x…a0d0: 3fffffff ffffa050
0x…a0c8: 00000000 00000000
0x…a0c0: 00000000 00000032
0x…a0b8: 00000000 00000005
0x…a0b0: 00000eee 00000004
0x…a0a8: 00000000 00000003
0x…a0a0: 00000000 00000002
0x…a098: 00000ddd 00000001
0x…a090: 00000000 00000031
0x…a088: 00000000 00000020 ✓ ✓
0x…a080: 00000000 00000000 ✓
0x…a078: 3fffffff ffffa000 ✓
0x…a070: 00000000 00000020 ✓ ✓
0x…a068: 00000000 00000022
0x…a060: 3fffffff ffffa000
0x…a058: 3fffffff ffffa0c0
0x…a050: 00000000 00000022
0x…a048: 00000000 00000005
0x…a040: 00000000 00000004
0x…a038: 00000000 00000003
0x…a030: 00000000 00000002
0x…a028: 00000000 00000001
0x…a020: 00000000 00000031
0x…a018: 00000000 00000022
0x…a010: 3fffffff ffffa070
0x…a008: 3fffffff ffffa050
0x…a000: 00000000 00000022

B. Provide a map of the current free list (a doubly-linked list). The first block is
shown filled in.

C. The next step is to call “coalesceFreeBlock”. In the rightmost column of the table
in part A, indicate which values will change – do not bother making entries for
data that will not change – and to what value.

D. What is the new address for the head of the free list?

6. Java – 10pts total

In Java, objects are represented by a struct that includes a header, vtable pointer, and the
fields of the object. The vtable, which corresponds to the class of the object provides a
jump table to the code for the class’s methods. Declarations for two new objects (Vehicle
and Car), one a subclass of the other, are shown below as are their data structs and their
vtables. Why are additional subclass data fields and methods always put at the end of
data struct and vtable? Explain in a sentence or two. HINT: considering the casting of a
subclass to a superclass as in:

Car c1 = new Car();.
Vehicle v1 = (Vehicle) c1;

REFERENCES

Powers of 2:

20 = 1
21 = 2 2-1 = .5
22 = 4 2-2 = .25
23 = 8 2-3 = .125
24 = 16 2-4 = .0625
25 = 32 2-5 = .03125
26 = 64 2-6 = .015625
27 = 128 2-7 = .0078125
28 = 256 2-8 = .00390625
29 = 512 2-9 = .001953125
210 = 1024 2-10 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer
pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack
ret pop return address from stack and jump there

mov move a value between registers and memory
lea compute effective address and store in a register

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)
sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
and bit-wise AND of src and dst with result stored in dst
or bit-wise OR of src and dst with result stored in dst
shl shift data in the dst to the left (logical shift) by the number of bits

specified in the 1st operand

jmp jump to address
jne conditional jump to address if zero flag is not set
cmp subtract src (1st operand) from dst (2nd) and set flags
test bit-wise AND src and dst and set flags

Suffixes for mov instructions:

s or z for sign-extended or zero-ed, respectively
Suffixes for all instructions:

b, w, l, or q for byte, word, long, and quad, respectively

Reference from Lab 5:

The functions, macros, and structs from lab5. These are all identical to those in the lab.
Note that some of them will not be needed in answering the following questions.

Structs:

struct BlockInfo {
 // Size of the block (in the high bits) and tags for whether the
 // block and its predecessor in memory are in use. See the SIZE()
 // and TAG macros, below, for more details.
 size_t sizeAndTags;
 // Pointer to the next block in the free list.
 struct BlockInfo* next;
 // Pointer to the previous block in the free list.
 struct BlockInfo* prev;
};

Macros:

/* Macros for pointer arithmetic to keep other code cleaner. Casting
 to a char* has the effect that pointer arithmetic happens at the
 byte granularity. */
#define UNSCALED_POINTER_ADD …
#define UNSCALED_POINTER_SUB …

/* TAG_USED is the bit mask used in sizeAndTags to mark a block as
 used. */
#define TAG_USED 1

/* TAG_PRECEDING_USED is the bit mask used in sizeAndTags to indicate
 that the block preceding it in memory is used. (used in turn for
 coalescing). If the previous block is not used, we can learn the
 size of the previous block from its boundary tag */
#define TAG_PRECEDING_USED 2;

/* SIZE(blockInfo->sizeAndTags) extracts the size of a 'sizeAndTags'
 field. Also, calling SIZE(size) selects just the higher bits of
 'size' to ensure that 'size' is properly aligned. We align 'size'
 so we can use the low bits of the sizeAndTags field to tag a block
 as free/used, etc, like this:

 sizeAndTags:
 +---+
 | 63 | 62 | 61 | 60 | | 2 | 1 | 0 |
 +---+
 ^ ^
 high bit low bit

 Since ALIGNMENT == 8, we reserve the low 3 bits of sizeAndTags for
 tag bits, and we use bits 3-63 to store the size.
 Bit 0 (2^0 == 1): TAG_USED
 Bit 1 (2^1 == 2): TAG_PRECEDING_USED
*/
#define SIZE …

/* Alignment of blocks returned by mm_malloc. */
define ALIGNMENT 8

/* Size of a word on this architecture. */
define WORD_SIZE 8

/* Minimum block size (to account for size header, next ptr, prev ptr,
 and boundary tag) */
#define MIN_BLOCK_SIZE …

/* Pointer to the first BlockInfo in the free list, the list's head.
 A pointer to the head of the free list in this implementation is
 always stored in the first word in the heap. mem_heap_lo() returns
 a pointer to the first word in the heap, so we cast the result of
 mem_heap_lo() to a BlockInfo** (a pointer to a pointer to
 BlockInfo) and dereference this to get a pointer to the first
 BlockInfo in the free list. */
#define FREE_LIST_HEAD …

Code for coalesceFreeBlock:

/* Coalesce 'oldBlock' with any preceeding or following free blocks. */
static void coalesceFreeBlock(BlockInfo* oldBlock) {
 BlockInfo *blockCursor;
 BlockInfo *newBlock;
 BlockInfo *freeBlock;
 // size of old block
 size_t oldSize = SIZE(oldBlock->sizeAndTags);
 // running sum to be size of final coalesced block
 size_t newSize = oldSize;

 // Coalesce with any preceding free block
 blockCursor = oldBlock;
 while ((blockCursor->sizeAndTags & TAG_PRECEDING_USED)==0) {
 // While the block preceding this one in memory (not the
 // prev. block in the free list) is free:

 // Get the size of the previous block from its boundary tag.
 size_t size = SIZE(*((size_t*)UNSCALED_POINTER_SUB(blockCursor,
WORD_SIZE)));
 // Use this size to find the block info for that block.
 freeBlock = (BlockInfo*)UNSCALED_POINTER_SUB(blockCursor, size);
 // Remove that block from free list.
 removeFreeBlock(freeBlock);

 // Count that block's size and update the current block pointer.
 newSize += size;
 blockCursor = freeBlock;
 }
 newBlock = blockCursor;

 // Coalesce with any following free block.
 // Start with the block following this one in memory
 blockCursor = (BlockInfo*)UNSCALED_POINTER_ADD(oldBlock, oldSize);
 while ((blockCursor->sizeAndTags & TAG_USED)==0) {
 // While the block is free:

 size_t size = SIZE(blockCursor->sizeAndTags);
 // Remove it from the free list.

 removeFreeBlock(blockCursor);
 // Count its size and step to the following block.
 newSize += size;
 blockCursor = (BlockInfo*)UNSCALED_POINTER_ADD(blockCursor, size);
 }

 // If the block actually grew, remove the old entry from the free
 // list and add the new entry.
 if (newSize != oldSize) {
 // Remove the original block from the free list
 removeFreeBlock(oldBlock);

 // Save the new size in the block info and in the boundary tag
 // and tag it to show the preceding block is used (otherwise, it
 // would have become part of this one!).
 newBlock->sizeAndTags = newSize | TAG_PRECEDING_USED;
 // The boundary tag of the preceding block is the word immediately
 // preceding block in memory where we left off advancing blockCursor.
 (size_t)UNSCALED_POINTER_SUB(blockCursor, WORD_SIZE) = newSize |
 TAG_PRECEDING_USED;

 // Put the new block in the free list.
 insertFreeBlock(newBlock);
 }
 return;
}

