
 1 of 12

CSE351 Autumn 2014 – Midterm Exam (29 October 2014)

Please read through the entire examination first! We designed this exam so that it can be

completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 4 problems for a total of 90 points. The point value of each problem is indicated in the

table below. Write your answer neatly in the spaces provided. If you need more space, you can

write on the back of the sheet where the question is posed, but please make sure that you indicate

clearly the problem to which the comments apply. If you have difficulty with part of a problem,

move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile

phones, no laptops). Please do not ask or provide anything to anyone else in the class during the

exam. Make sure to ask clarification questions early so that both you and the others may benefit as

much as possible from the answers.

Good Luck!

Name: ________________________

UWNet ID: ________________________

Quiz Section: ________________________

Problem Max Score Score

1 20

2 10

3 30

4 30

TOTAL 90

 2 of 12

1. Integers and Floats (20 points)

We define two new types as follows:

 Nine_ints are 9-bit signed two’s complement integers.

 Nine_floats are 9-bit floating point numbers with 4 bits for the exponent, 4 bits for the

fraction, and 1 bit for the sign. Nine_floats are similar to IEEE floating point as far as layout

of sign, exponent and fraction and represent special values (e.g. 0, pos and neg infinity, NAN)

similar to how they are represented in 32 bit IEEE floating point.

A. What is the largest positive number we can represent with Nine_ints?

Bit pattern in binary: 0 1111 1111

Value in decimal: 255

Can calculate by adding up all the values (128 + 64 + 32 + 16 + 8 + 4 + 2+ 1), or by

subtracting 1 from the next bit position (256).

B. What is the bias for Nine_float?

2
4-1

 = 7

 3 of 12

C. What is the largest positive number we can represent with Nine_floats?

Bit pattern in binary: 0 1110 1111

 sign exp frac

Value in decimal: 248

 Exponent = 14 – bias = 14 – 7 = 7

 1.1111 * 2
7
 = 1111 1000 = 128 + 64 + 32 + 16 + 8 = 248

D. Assuming rules similar to those for conversions between IEEE floats and ints and addition in

C, circle all the statements below that are TRUE.

a. TRUE - It is possible to lose precision when converting from Nine_ints to

Nine_floats.

b. TRUE - It is possible to lose precision when converting from Nine_floats to

Nine_ints.

c. TRUE - The smallest negative number representable as a Nine_int < The smallest

negative number representable as a Nine_float. (Reminder: -4 < -3)

d. Adding a negative Nine_float to a positive Nine_float will not result in a loss

of precision.

 4 of 12

2. Arrays (10 points)

Given the following C function:

long int sum_pair(long int z[16], long int dig)

{

 return z[dig] + z[dig + 1];

}

Write x86-64 bit assembly code for this function here. You can assume that 0 <= dig < 15.

Comments are not required but could help for partial credit.

sum_pair:

 movq (%rdi,%rsi,8), %rax

 addq 8(%rdi,%rsi,8), %rax

 ret

 5 of 12

3. Assembly to C (30 points)

Given the C code for the function trick(), determine which IA32 and x86-64 code snippet

corresponds to a correct implementation of trick().

int trick (int *x, int y) {

 int temp = *x * 5;

 int result = temp & y;

 return result - y;

}

 6 of 12

A. Circle all of the IA-32 implementations below that correctly implement trick() (there

could be more than one). For implementations that are not correct give at least one reason each

why it is not correct. (You do not need to give reasons why the correct ones are correct.)

i) pushl %ebp

 movl %esp, %ebp

 leal 8(%ebp), %eax

 movl %eax, %edx

 sall $2, %eax

 addl %edx, %eax

 andl 12(%ebp), %eax

 subl 12(%ebp), %eax

 popl %ebp

 ret

Reason: Operates on the address of x on the stack, as opposed to the contents of *x

(what x “points to”).

ii) pushl %ebp

 movl %esp, %ebp

 movl 8(%ebp), %eax

 movl (%eax), %edx

 movl %edx, %eax

 addl %eax, %edx

 addl %edx, %eax

 andl 12(%ebp), %eax

 subl 12(%ebp), %eax

 popl %ebp

 ret

Reason: Calculates ((*x * 3) & y) -y

iii) pushl %ebp

 movl %esp, %ebp

 movl 12(%ebp), %edx

 movl 8(%ebp), %eax

 movl (%eax), %eax

 leal (%eax,%eax,4), %eax

 andl %edx, %eax

 subl %edx, %eax

 popl %ebp

 ret

Reason: Correct

 7 of 12

B. Circle all of the x86-64 implementations below that correctly implement trick() (there

could be more than one). For implementations that are not correct give at least one reason each

why it is not correct. (You do not need to give reasons why the correct ones are correct.)

i) movl (%rdi), %eax

 addl (%rax), %eax

 addl %eax, %eax

 andl %esi, %eax

 subl %esi, %eax

 ret

Reason: Adds **x to *x, also does the wrong calculation.

ii) movl (%rdi), %eax

 leal (%rax,%rax,4), %eax

 andl %esi, %eax

 subl %esi, %eax

 ret

Reason: Correct

iii) movl (%rdi), %eax

 leal (%eax,%eax,2), %eax

 addl %eax, %eax

 andl %esi, %eax

 subl %esi, %eax

 ret

Reason: Calculates ((*x *6) & y) - y

 8 of 12

4. Stack Discipline (30 points)

Examine the following recursive function:

long int treat(long int a, long int *b) {

 if (a <= 0) {

 return *b;

 } else {

 return treat(a-*b, b);

 }

}

Here is the x86_64 assembly for the same function:

4005fc <treat>:

4005fc: sub $0x18,%rsp

400600: mov %rdi,0x8(%rsp)

400605: mov %rsi,(%rsp)

400609: cmpq $0x0,0x8(%rsp)

40060f: jg 0x40061a <treat+30>

400611: mov (%rsp),%rax

400615: mov (%rax),%rax

400618: jmp 0x400638 <treat+60>

40061a: mov (%rsp),%rax

40061e: mov (%rax),%rax

400621: mov 0x8(%rsp),%rdx

400626: sub %rax,%rdx

400629: mov (%rsp),%rax

40062d: mov %rax,%rsi

400630: mov %rdx,%rdi

400633: callq 0x4005fc <treat>

400638: add $0x18,%rsp

40063c: retq

 9 of 12

Suppose we call treat(7, &val) from main(), with registers %rsi = 0x7ff…ffb00

and %rdi = 7. The value stored at address 0x7ff…ffb00 is the long int value 5. We set a

breakpoint just before the statement “return *b” executes (i.e. we are just about to return

from treat() without making another recursive call but have not yet executed the add

instruction before retq). Draw what the stack will look like when the program hits that

breakpoint. Start at the top of the stack and go all the way down to the return address back to

main() shown currently on the stack. Give both a description of the item stored at that

location and the value stored at that location. If a location on the stack is not used, write

“unused” in the Description for that address and put “-----” for its Value. You may list the

Values in hex or decimal. Unless preceded by 0x we will assume decimal. It is fine to use f…f

for sequences of f’s as shown above for %rsi. Add more rows to the table as needed.

Memory address on stack Name/description of item Value

0x7ffffffffffffad0 Return address back to main 0x400827

0x7ffffffffffffac8 Unused --------------

0x7ffffffffffffac0 a 7

0x7ffffffffffffab8 b 0x7ff…ffb00

0x7ffffffffffffab0
Return Address back to

treat 0x400638

0x7ffffffffffffaa8 Unused --------------

0x7ffffffffffffaa0 a (in 2
nd

 call to treat) 2

0x7ffffffffffffa98 b (in 2
nd

 call to treat) 0x7ff…ffb00

0x7ffffffffffffa90
Return Address back to

treat 0x400638

0x7ffffffffffffa88 Unused --------------

0x7ffffffffffffa80 a (in 3
rd

 call to treat) -3

0x7ffffffffffffa78 b (in 3
rd

 call to treat) 0x7ff…ffb00

0x7ffffffffffffa70

0x7ffffffffffffa68

0x7ffffffffffffa60

%rsp points

here at start

of procedure

 10 of 12

B. What is the value stored in register $rsp at the start of the procedure (in hex or decimal)?

0x7ffffffffffffad0

C. What is the value stored in register $rsp when the breakpoint is reached (in hex or decimal)?

0x7ffffffffffffa78

D. What value is returned by treat(7, &val)?

5

E. Where will that return value be found?

Register %rax

 11 of 12

REFERENCES

Powers of 2:

2
0
 = 1

2
1
 = 2 2

-1
 = .5

2
2
 = 4 2

-2
 = .25

2
3
 = 8 2

-3
 = .125

2
4
 = 16 2

-4
 = .0625

2
5
 = 32 2

-5
 = .03125

2
6
 = 64 2

-6
 = .015625

2
7
 = 128 2

-7
 = .0078125

2
8
 = 256 2

-8
 = .00390625

2
9
 = 512 2

-9
 = .001953125

2
10

 = 1024 2
-10

 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1
st
 operand) to dst (2

nd
) with result stored in dst (2

nd
)

sub subtract src (1
st
 operand) from dst (2

nd
) with result stored in dst (2

nd
)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

sar shift data in the dst to the right (arithmetic shift)

by the number of bits specified in 1
st
 operand

jmp jump to address

jne conditional jump to address if zero flag is not set

cmp subtract src (1
st
 operand) from dst (2

nd
) and set flags

test bit-wise AND src and dst and set flags

 12 of 12

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx,

rbp, r12, r13, r14, and r15. rsp is a special register.

