
 1 of 16

CSE351 Autumn 2014 – Final Exam (10 Dec 2014)

Please read through the entire examination first! We designed this exam so that it can be

completed in 110 minutes and, hopefully, this estimate will prove to be reasonable.

There are 6 problems for a total of 150 points. The point value of each problem is indicated in

the table below. Write your answer neatly in the spaces provided. If you need more space,

you can write on the back of the sheet where the question is posed, but please make sure that

you indicate clearly the problem to which the comments apply. If you have difficulty with

part of a problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no

mobile phones, no laptops). Please do not ask or provide anything to anyone else in the class

during the exam. Make sure to ask clarification questions early so that both you and the

others may benefit as much as possible from the answers.

Good Luck!

Name: __Sample Solution________

UWNet ID: ________________________

Problem Max Score Score

1 (Potpourri) 30

2 (Caches) 35

3 (Virtual Memory) 24

4 (Memory Allocation) 32

5 (Java) 10

6 (Variety Pack) 19

TOTAL 150

 2 of 16

1. Potpourri! True/False (30 total, 2 pts each)

 True False

A. Freeing memory with an implicit free list takes time linear in the

number of free blocks in the worst case.

 F

B. At runtime, a program can tell with certainty whether data are stored

in the cache, physical memory, or disk.

 F

C. Accessing an address in memory can be both a TLB hit and a cache

miss.

T

D. In C, the following declarations are equivalent (i.e. the variable a can

be used in the same way in the remainder of the program in either

case):
int a[];

int* a;

T

E. In C, it is okay for malloc to move allocated blocks around in the heap

to get better utilization of memory.

 F

F. In Java on x86-64, you can cast a long int to a pointer.

 F

G. On x86-64, casting a C float to double has no precision loss.

T

H. TLB is used to improve the speed of transferring data from memory

to cache.

 F

I. With garbage collection, the compiler identifies objects that you are

no longer using and garbage collects them.

 F

J. Java programs cannot take advantage of locality.

 F

K. If I give you a Java virtual machine that runs on an x86 processor, you

can also run the exact same virtual machine on a MIPS processor.

 F

L. The compiler determines whether local variables are allocated on the

stack or stored in registers.

T

M. The operating system determines which process gets to run next.

T

N. In C, the programmer decides whether arrays are allocated on the

heap or the stack.

T

O. The compiler assigns process IDs to individual processes.

 F

 3 of 16

2. Caches – 35 pts total (14/A, 6/B, 15C)

A. You are given a direct-mapped cache of total size 256 bytes, with cache block size of

16 bytes. The system’s page size is 4096 bytes. The following C array has been

declared and initialized to contain some values:

int x[2][64];

i. How many sets will the cache have?

256/16 = 16 sets

ii. How many bits will be required for the cache block offset?

4 bits

iii. If the physical addresses are 22 bits, how many bits are in the cache tag?

22 – 4 – 4 = 14 bits

iv. Assuming that all data except for the array x are stored in registers, and that the

array x starts at address 0x0. Give the miss rate (as a fraction or a %) and total

number of misses for the following code, assuming that the cache starts out empty:

int sum = 1;

int i;

for (i = 0; i < 64; i++) {

 sum += x[0][i] + x[1][i];

}

 Miss Rate: ___100%___________ Total Number of Misses: ___128_________

v. What if we maintain the same total cache size and cache block size, but increase

the associativity to 2-way set associative. Now what will be the miss rate and total

number of misses of the above code, assuming that the cache starts out empty?

 Miss Rate: ____25%_________ Total Number of Misses: ____32________

 4 of 16

2. (cont.)

B. Given the following access results in the form (address, result) on an empty cache of

total size 16 bytes, what can you infer about this cache’s properties? Assume LRU

replacement policy. Circle all that apply.

(0, Miss), (8, Miss), (0, Hit), (16, Miss), (8, Miss)

a. The block size is greater than 8 bytes

b. The block size is less or equal to 8 bytes

c. This cache has only two sets

d. This cache has more than 8 sets

e. This cache is 2-way set associative

f. The cache is 4-way set associative

g. Using an 8 bit address, the tag would be 4 bits

h. Using an 8 bit address, the tag would be greater than 4 bits

i. None of the above

Block sizes will range from 1 to 8 bytes, thus the number of sets will range from 1 to 8.

All combos of block sizes and number of sets will use only 3 bits, leaving 5 bits for the

tag.

 5 of 16

2. (cont.)

C. Given the following 2-way set-associative cache and its contents in a system with a

10-bit address:

Index Tag V B0 B1 B2 B3 B4 B5 B6 B7 Tag V B0 B1 B2 B3 B4 B5 B6 B7

0 07 1 99 1F 34 56 99 1F 34 56 11 1 DE AD BE EF DE AD BE EF

1 03 1 27 A4 C5 23 00 00 00 01 1C 1 1F 2E 11 09 1F 2E 11 09

2 01 1 54 21 65 78 54 21 65 78 0F 0 CA FE 12 34 CA FE 12 34

3 0F 1 01 02 03 04 05 06 07 08 1C 0 12 34 56 78 13 24 57 68

What are the results of the following read operations (specify whether it is a hit or miss and

the value if is determinable from the information given, otherwise just write ND for non-

determinable)? Assume the cache uses a LRU replacement policy and that reads are executed

in the order given below (addresses are given in hex).

Address

to be read

Tag

(give bits)

Set

(give bits)

Block Offset

(give bits)

Hit or Miss

(H or M)

Value read

(or ND)

0x389 11100 01 001 H 2E

0x30C 11000 01 100 M ND

0x3BB 11101 11 011 M ND

0x308 11000 01 000 H
(brought in

by0x30C access)

ND

0x0E3 00111 00 011 H 56

 6 of 16

3. Virtual Memory – 24 pts total (3/A, 3/B, 3/C, 15/D)

We have a system with the following properties:

 a virtual address of 13 bits (4 hex digits),

 a physical address of 11 bits (3 hex digits),

 pages that are 64 bytes,

 a corresponding page table, and

 a TLB with 16 entries that is 4-way set associative.

The current contents of the TLB and Page Table are shown below:

TLB

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 - 0 07 00 1 06 - 0 1F 03 1

1 0C 03 1 0A - 0 00 0B 1 01 0F 1

2 07 - 0 0C 02 1 0F 01 1 0B - 0

3 01 1C 1 0C 01 1 04 01 0 1A 01 1

Page Table (only first 16 of the PTEs are shown)

VPN PPN Valid VPN PPN Valid VPN PPN Valid VPN PPN Valid

00 03 1 04 - 0 08 03 1 0C 0F 1

01 0B 1 05 0F 1 09 - 0 0D - 0

02 03 1 06 - 0 0A 01 1 0E 06 1

03 03 1 07 1C 1 0B 08 1 0F 0A 1

 7 of 16

3. (cont.)

A. Specify which bits correspond to the components of the 13-bit virtual address, namely,

the virtual page number (VPN) and the virtual page offset (VPO) by placing “VPN” or

“VPO” in each cell.

12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPN VPN VPN VPN VPN VPN VPO VPO VPO VPO VPO VPO

B. Now do the same for the TLB by identifying the bits of the 13-bit virtual address that

are used for the TLB set index and the TLB tag, use the labels “TI” and “TT”,

respectively. Leave any other bits blank.

12 11 10 9 8 7 6 5 4 3 2 1 0

TT TT TT TT TT TI TI

C. Working with the 11-bit physical address, specify which bits correspond to the

physical page number (PPN) and the physical page offset (PPO) by using “PPN” and

“PPO” labels in each cell.

10 9 8 7 6 5 4 3 2 1 0

PPN PPN PPN PPN PPN PPO PPO PPO PPO PPO PPO

 8 of 16

3. (cont.)

D. Determine the physical address, TLB miss or hit, and whether there is a page fault for

the following virtual address accesses (write “Y” or “N” for yes or no, respectively, in

the TLB Miss? And Page Fault? columns). If you can’t determine the PPN and/or

physical address and/or TLB miss and/or Page Fault, simply write ND (for non-

determinable) in the appropriate entry in the table.

Virtual Address
VPN

(give bits)

TT
(give
bits)

TI
(give
bits)

PPN
(give bits)

Physical Address
(give bits)

TLB
Miss?

Page
Fault?

0x0C40 0110001 01100 01 00011 00011000000 N N

0x02CF 0001011 00010 11 01000 01000001111 Y N

0x130A 1001100 10011 00 ND ND Y ND

 9 of 16

4. Memory Allocation – 32pts total (3/A, 20/B, 9/C-E)

Why did you leave your laptop open when you went back for that second piece of pumpkin

pie?! Your well-meaning younger cousin tried to “help you” finish lab 5 but you suspect

he/she has actually inserted bugs into your free list. To track down the problem, you need to

implement the bugCheck() method, which scans your free list, and checks each block to see

if the tag bits in its header properly indicate that this block is free. If it finds a block that is

marked improperly, it should set the 3rd low order bit to 1 (you knew there was something

useful we could do with that bit!).

 It should leave all other bits as it finds them.

 It only needs to check and set tag bits in the header, not in the boundary tag.

 It does not need to check if the bit for “predecessor in use” is set properly.

bugCheck()should also return the total number of bytes on the free list that it has tagged in

this manner as potential bugs. There is lab 5 code on the last pages of the exam.

A) Fill in the value you use to set the 3rd low order bit. You must use this in your code.

#define POSSIBLE_BUG ___4________________

B) Implement the body of bugCheck()

/* This function scans the free list and for each block that is not

properly marked as free in the header:

- Set its POSSIBLE_BUG bit to 1

- Add its size to the running total of buggy bytes

It returns the total number of bytes tagged as possible bugs. */

static size_t bugCheck(void) {

BlockInfo * curFreeBlock;

size_t bugBytes = 0;

curFreeBlock = FREE_LIST_HEAD;

// INSERT YOUR CODE HERE. SHOULD BE 5-12 LINES.

while (curFreeBlock != NULL) {

 if (curFreeBlock->sizeAndTags & TAG_USED) {

 bugBytes += SIZE(curFreeBlock->sizeAndTags);

 curFreeBlock->sizeAndTags |= POSSIBLE_BUG;

 }

 curFreeBlock = curFreeBlock->next;

 }

return bugBytes;

}

 10 of 16

4. (cont.)

C) True/False In a C program, freeing the same address multiple times has no effect.

D) In a C program, forgetting to free something is called ___a memory leak_______.

E) For each of the following, indicate whether it is likely to have a positive impact on

Utilization (U) or Throughput(T). If it will likely have a positive impact on both, check both

U and T. If it is not likely to have a positive impact on either, check Neither.

Memory Allocation Technique Utilization (U) Throughput (T) Neither

First Fit X

Segregated List Allocator X X

Coalescing X

Best-Fit X

Splitting X

 11 of 16

5. Java – 10pts total

A. A vtable in Java is very similar to __a jump table________ (something we discussed

earlier in the course).

B. Given the following Java class hierarchy:

And the following additional code:

class FinalExam {

public static void main(String[] args) {

Vehicle v1 = new Vehicle(); // line 1

 Car c = new Car(); // line 2

 Vehicle v2 = new Car(); // line 3

Boat b = (Boat) v1; // line 4

 }

}

Circle all of the items below that will be true:

i. Line 3 will cause a compiler error.

ii. Line 4 will cause a compiler error.

iii. Line 3 will cause a run-time error.

iv. Line 4 will cause a run-time error.

v. Variable c will be on the heap.

vi. What v1 refers to will be on the heap.

vii. Car objects will only have space allocated for one int field (wheels and

passengers will refer to the same location in memory).

viii. Objects of the same type can share a single vtable.

class Vehicle {

 int passengers;

}

class Boat extends Vehicle {

 int propellers;

}

class Car extends Vehicle {

 int wheels;

}

 12 of 16

6. Variety Pack – 19pts total

A. Which of the following are considered to be a part of an ISA? (Circle all that apply)

i. The size of physical memory

ii. The number of registers

iii. The word size

iv. The size of the cache in bytes

v. The number of cycles per instruction

B. Given a multidimensional array of floats A[6][8], if A starts at address 0, at what byte

address is the element A[4][7]? (all addresses given in decimal)

i. 240

ii. 312

iii. 156

iv. 200

v. None of the above

C. Which of the following is not true about Java? (Circle all that apply)

i. Java characters inside of a String are two bytes in size

ii. An array’s size is stored at the front of the array

iii. Each object in Java stores a pointer to its class’ vtable

iv. When compiled, Java code is turned into Java bytecode

v. None of the above (None of the above are false statements.)

D. Given the following struct in x86-64:

struct student {

 char name[25];

 int id;

 char year[10];

 double gpa;

};

What is the total size of this struct in bytes?

name:25 (+ 3 = 28), id:4 (=32), year:10 (+ 6 = 48), gpa:8 = 56 bytes total

As a programmer, could you have declared this struct differently so that it uses less

memory? If no, explain why not. If yes, show how you would declare it and give the new

total size in bytes.

struct student {

 double gpa;

 int id;

 char name[25];

 char year[10];

};

Note that the order of name and year could be reversed. Total = 48 bytes, 47 + 1

byte at the end.

 13 of 16

6. (cont.)

E. Assume the following C instructions have been executed:

int a = 4;

int* b = &a;

In the debugger, you are at a breakpoint and observe that b is stored in %rdx. After

the following instruction is executed:

 lea (%rdx,%rdx,4), %rdx

Which (if any) of these will definitely be true: (Circle all that apply)

i. a will contain the value 5

ii. a will contain the value 20

iii. b will contain the value 5

iv. b will contain the value 20

v. %rdx will contain the value 5

vi. %rdx will contain the value 20

vii. None of the above

F. In Java, a 2-d array of (4-byte) ints: (Circle all that apply)

i. Can be stored on the heap

ii. Can be stored on the stack

iii. Are stored in one contiguous block

iv. Take up more total space than the same array declared in C

v. None of the above

 14 of 16

REFERENCES

Powers of 2:

20 = 1

21 = 2 2-1 = .5

22 = 4 2-2 = .25

23 = 8 2-3 = .125

24 = 16 2-4 = .0625

25 = 32 2-5 = .03125

26 = 64 2-6 = .015625

27 = 128 2-7 = .0078125

28 = 256 2-8 = .00390625

29 = 512 2-9 = .001953125

210 = 1024 2-10 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer

pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack

ret pop return address from stack and jump there

mov move a value between registers and memory

lea compute effective address and store in a register

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)

sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)

and bit-wise AND of src and dst with result stored in dst

or bit-wise OR of src and dst with result stored in dst

shl shift data in the dst to the left (logical shift) by the number of bits specified in

the 1st operand

jmp jump to address

jne conditional jump to address if zero flag is not set

cmp subtract src (1st operand) from dst (2nd) and set flags

test bit-wise AND src and dst and set flags

Suffixes for mov instructions:

s or z for sign-extended or zero-ed, respectively

Suffixes for all instructions:

b, w, l, or q for byte, word, long, and quad, respectively

 15 of 16

Reference from Lab 5:

The functions, macros, and structs from lab5. These are all identical to those in the lab. Note

that some of them will not be needed in answering the exam questions.

Structs:

struct BlockInfo {

 // Size of the block (in the high bits) and tags for whether the

 // block and its predecessor in memory are in use. See the SIZE()

 // and TAG macros, below, for more details.

 size_t sizeAndTags;

 // Pointer to the next block in the free list.

 struct BlockInfo* next;

 // Pointer to the previous block in the free list.

 struct BlockInfo* prev;

};

Macros:

/* Macros for pointer arithmetic to keep other code cleaner. Casting

 to a char* has the effect that pointer arithmetic happens at the

 byte granularity. */

#define UNSCALED_POINTER_ADD …

#define UNSCALED_POINTER_SUB …

/* TAG_USED is the bit mask used in sizeAndTags to mark a block as

 used. */

#define TAG_USED 1

/* TAG_PRECEDING_USED is the bit mask used in sizeAndTags to indicate

 that the block preceding it in memory is used. (used in turn for

 coalescing). If the previous block is not used, we can learn the

 size of the previous block from its boundary tag */

#define TAG_PRECEDING_USED 2;

/* SIZE(blockInfo->sizeAndTags) extracts the size of a 'sizeAndTags'

 field. Also, calling SIZE(size) selects just the higher bits of

 'size' to ensure that 'size' is properly aligned. We align 'size'

 so we can use the low bits of the sizeAndTags field to tag a block

 as free/used, etc, like this:

 sizeAndTags:

 +---+

 | 63 | 62 | 61 | 60 | | 2 | 1 | 0 |

 +---+

 ^ ^

 high bit low bit

 Since ALIGNMENT == 8, we reserve the low 3 bits of sizeAndTags for

 tag bits, and we use bits 3-63 to store the size.

 Bit 0 (2^0 == 1): TAG_USED

 Bit 1 (2^1 == 2): TAG_PRECEDING_USED

*/

#define SIZE …

/* Alignment of blocks returned by mm_malloc. */

define ALIGNMENT 8

 16 of 16

/* Size of a word on this architecture. */

define WORD_SIZE 8

/* Minimum block size (to account for size header, next ptr, prev ptr,

 and boundary tag) */

#define MIN_BLOCK_SIZE …

/* Pointer to the first BlockInfo in the free list, the list's head.

 A pointer to the head of the free list in this implementation is

 always stored in the first word in the heap. mem_heap_lo() returns

 a pointer to the first word in the heap, so we cast the result of

 mem_heap_lo() to a BlockInfo** (a pointer to a pointer to

 BlockInfo) and dereference this to get a pointer to the first

 BlockInfo in the free list. */

#define FREE_LIST_HEAD …

