
Full Name:

Student ID:

UW CSE 351, Winter 2013

Midterm Exam
February 15, 2013

Instructions:

• Make sure that your exam is not missing any of the 9 pages, thenwrite your full name and UW student
ID on the front.

• Read over the entire exam before starting to work on the problems! The last page is a reference page
that you may tear off for use during the exam; it does not have to be turned in.

• Write your answers in the space provided below each problem.If you make a mess, clearly indicate
your final answer. Be sure to answer all parts of all questions.

• Don’t spend too much time on a problem if there are other easy problems that you haven’t solved yet.
There are 50 total points and 50 minutes to take the exam, so try to answer questions at a rate of one
point per minute.

• No books, notes, or electronic devices may be used during the exam. You may not communicate
with other students during the exam, but please ask the instructor / TAs if you need clarification for
some problem.

Problem 1 (8 points):

Problem 2 (10 points):

Problem 3 (18 points):

Problem 4 (8 points):

Problem 5 (6 points):

TOTAL (50 points):

Page 1 of 9

Problem 1. (8 points):
Consider an 8-bit machine that uses two’s complement arithmetic for signed integers. What is the maximum
signed integer value,in decimal, that can be represented with 8 bits?
With an n-bit two’s complement representation, we can represent values from−2n−1 to 2n−1 − 1, so the
maximum signed value is27 − 1 = 127. You could also calculate this if you know that the maximum
binary value is01111111: 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127.

What is the minimum signed integer value,in decimal, that can be represented with 8 bits?
−128; again, if you know that the minimum binary value has the most-significant (negative-weight) bit
set and no other (positive-weight) bits set, you could calculate this from10000000 = −128.

What is the result,in decimal, if we add together the following two signed integers (represented in binary):
00010110 + 11111100 ?
To solve this problem, you can either add the two binary numbers together using standard carry-addition
(ignoring the final carry-out) and then convert to decimal, or you can convert both numbers to decimal
first and then add. The result is22 +−4 = 18.

When we add together50 + 100 on this machine, we get the result−106. What phenomenon has occured
here? (one word)
Overflow.

Page 2 of 9

Problem 2. (10 points):
Consider the following assembly code for a Cfor loop:

loop:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %ecx
movl 12(%ebp), %edx
movl $0, %eax
cmpl %edx, %ecx
jle .L3

.L6:
subl $1, %ecx
addl $1, %edx
addl $1, %eax
cmpl %edx, %ecx
jg .L6

.L3:
addl $1, %eax
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use the symbolic variablesx , y , andresult in your expressions below —do not use register
names.)

int loop(int x, int y)
{

int result;

for (________________; ________________; result++) {

________________;

________________;
}

________________;

return result;
}

Solution: int result; for (result = 0; x > y; result++) { x--; y++; }
result++; return result;

Page 3 of 9

Problem 3. (18 points):
This page contains code for Problem 3. If you wish, you may carefully detach this page from the exam
(make sure all other pages are still secure!) to avoid flipping back and forth; this page does not need to be
turned in.

Consider the following C code:

int sum_plus_seven(int * xp, int * yp)
{

int num = 7;
int x = * xp;
int y = * yp;
return x + y + num;

}

int call_sum()
{

int a = 3;
int b = 5;
int c = sum_plus_seven(&a, &b);
return c;

}

These procedures have the following disassembled form on anIA32 machine:

080483fc <sum_plus_seven>:
80483fc: 55 push %ebp
80483fd: 89 e5 mov %esp,%ebp
80483ff: 8b 45 08 mov 0x8(%ebp),%eax
8048402: 8b 00 mov (%eax),%eax
8048404: 83 c0 07 add $0x7,%eax
8048407: 8b 55 0c mov 0xc(%ebp),%edx
804840a: 03 02 add (%edx),%eax
804840c: 5d pop %ebp
804840d: c3 ret

0804840e <call_sum>:
804840e: 55 push %ebp
804840f: 89 e5 mov %esp,%ebp
8048411: 83 ec 18 sub $0x18,%esp
8048414: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
804841b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%ebp)
8048422: 8d 45 f8 lea -0x8(%ebp),%eax
8048425: 89 44 24 04 mov %eax,0x4(%esp)
8048429: 8d 45 fc lea -0x4(%ebp),%eax
804842c: 89 04 24 mov %eax,(%esp)
804842f: e8 c8 ff ff ff call 80483fc <sum_plus_seven>
8048434: c9 leave
8048435: c3 ret

Page 4 of 9

Problem 3. (18 points):

A. Suppose our program executescall sum() . Assume that after executing themov instruction at
address0x804840f , both %esp and%ebp contain the address0xffffffec . Simulate the ex-
ecution of the program up to the point wherethe mov instruction at address 0x80483fd has just
completed. Fill in the diagram below with a name or description for eachitem that is placed on the
stack, and the value of that item (you do not have to fill in values for the locations that are already
filled with dashes). If a location on the stack is not used, write “unused” in the description for that
address.

Address in memory Name / description of item on stack Value

0xffffffec %ebpsaved bycall sum -----------------------

0xffffffe8 a 3

0xffffffe4 b 5

0xffffffe0 unused -----------------------

0xffffffdc unused -----------------------

0xffffffd8 * b 0xffffffe4

0xffffffd4 * a 0xffffffe8

0xffffffd0 Return address 0x8048434

0xffffffcc %ebp saved by sum plus seven 0xffffffec

(This problem continues on the next page!)

Page 5 of 9

B. Continue simulating the execution of the program untilthe pop instruction at address 0x804840c
has just completed. What are the values in registers%espand%ebpat this point? (Feel free to draw
in the margins on the previous page, outside of the diagram, but write your answers here.)

After the pop , the stack is in exactly the state that it was in after thecall instruction at 0x804842f .
The old%ebp that was saved at the beginning ofsum plus seven was just popped off the stack and
stored in%ebp, so%ebp= 0xffffffec . The return address is now on the top of the stack, and it will
be popped off by the next instruction to be executed, theret at 0x804840d . The stack pointer points at
the return address on the stack:%esp= 0xffffffd0 .

C. Suppose that we compiled this C code on an x86-64 machine rather than on an IA32 machine. De-
scribeoneway that you would expect the generated assembly code to change.

There are many possible answers, including: we might see theuse of the additional registers%r8 - %r15;
registers would be used to pass arguments rather than the stack; a stack frame probably would not be
allocated at all forsum plus seven ; if a stack frame was used, offsets would be taken from%rsp and
%rbp would be available for general-purpose use; etc.

Page 6 of 9

Problem 4. (8 points):
Consider the following C struct declaration on an IA32 Linuxsystem:

struct node {
short p[3];
int r;
struct node * next;

}

Recall that in C the size of ashort is two bytes.

A. Using the template below (allowing a maximum of 24 bytes),diagram how the compiler will lay out
the members of astruct node in memory, using the IA32 Linux alignment rules. Mark off and
label the bytes for each individual element (arrays may be labeled as a single element).Shade or
cross-hatch bytes that are allocated, but are not used (to satisfy alignment). Clearly indicate the
right-hand boundary of the data structure.

struct node:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15|16 17 18 19 20 21 22 23

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|-- +--+--+--+--+--+--+--+

| short p[3] |#####| int r | * next | |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|-- +--+--+--+--+--+--+--+

B. When a struct is placed in memory, its initial address (theaddress of its first byte) will be a multiple
of K. What is the value of K for astruct node on an IA32 Linux system?

K is set to the maximum alignment requirement of any of the members in the struct. Theshort elements
are aligned to multiples of 2 bytes, theint is aligned to a multiple of 4, and the pointer is aligned to a
multiple of 4, so K = 4.

C. Can we reduce the number of bytes required for astruct node by defining its members in a
different order? Why or why not?

No, because the total size of the struct must also be a multiple of K; even if we rearrange the members of
the struct, it will still occupy 16 bytes total, with two bytes of padding somewhere.

D. When we allocate a nested (e.g. two-dimensional) array inC, is it laid out in memory with the rows
in contiguous bytes, or with the columns in contiguous bytes? (Note: this question is unrelated to
struct node .)

Rows.

Page 7 of 9

Problem 5. (6 points):
Match each of the assembly procedures on the left with the equivalent C function on the right.You must
show some work(e.g. write a note or two on the assembly functions)in order to receive credit!
Note that theshr instruction performs alogical right-shift. int s are four bytes in size, as usual.

foo1:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
movl (%eax), %eax
addl %eax, %eax
popl %ebp
ret

foo2:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %edx
movl %edx, %eax
sall $4, %eax
subl %edx, %eax
popl %ebp
ret

foo3:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
shrl $31, %eax
popl %ebp
ret

Fill in your answers here:
foo1 corresponds to choice5.
foo2 corresponds to choice3.
foo3 corresponds to choice1.

choice3() : to multiply by 15, first
shift x left 4 (equivalent to multiplying by
24 = 16), then subtract x from that result.
choice1() : to check if x< 0, this code
returns1 if the most-significant bit in x is
1, otherwise it returns0.

int choice1(int x)
{

return (x < 0);
}

int choice2(int x)
{

return (x << 31) & 1;
}

int choice3(int x)
{

return 15 * x;
}

int choice4(int x)
{

return (x ˆ 31) & 1;
}

int choice5(int * x)
{

return * x + * x;
}

int choice6(int * x)
{

return * x * * x;
}

int choice7(int * x)
{

return (* x >> 31);
}

Page 8 of 9

References

Powers of 2:

20 = 1

21 = 2 2−1 = 0.5

22 = 4 2−2 = 0.25

23 = 8 2−3 = 0.125

24 = 16 2−4 = 0.0625

25 = 32 2−5 = 0.03125

26 = 64 2−6 = 0.015625

27 = 128 2−7 = 0.0078125

28 = 256 2−8 = 0.00390625

29 = 512 2−9 = 0.001953125

210 = 1024 2−10 = 0.0009765625

x86 assembly instructions:

push push a value onto the stack and decrement the stack pointer
pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack
leave mov %ebp, %esp, thenpop %ebp
ret pop return address from stack and jump there

mov move a value between registers and memory
lea compute effective address and store in a register

add add 1st operand to 2nd with result stored in 2nd
sub subtract 1st operand from 2nd with result stored in 2nd
and bit-wise AND of two operands with result stored in 2nd
or bit-wise OR of two operands with result stored in 2nd
sal, shl left shift
sar arithmetic right shift
shr logical right shift

cmp subtract 1st operand from 2nd and set condition flags
jmp jump to address
jg conditional jump to address if signed comparison is greater-than
jge conditional jump to address if signed comparison is greater-than-or-equal
jl conditional jump to address if signed comparison is less-than
jle conditional jump to address if signed comparison is less-than-or-equal

Page 9 of 9

