
Full Name:

Student ID #:

UW CSE 351, Winter 2013

Final Exam
March 20, 2013

2:30pm - 4:20pm

Instructions:

• Write your full name and UW student ID number on the front of the exam. When the exam begins,
make sure that your copy is not missing any of the 13 pages before proceeding.

• Read over the entire exam before starting to work, and be sureto carefully read the instructions for
every problem.

• Write your answers in the space provided below or next to eachproblem. If you make a mess, clearly
indicate your final answer.Be sure to answer all parts of all questions!

• Some pages can be removed from the exam to avoid flipping back and forth while working on the
problems. A note at the top of the page will indicate these pages. If you remove these pages, make
sure that the rest of your exam is still securely fastened.

• Don’t spend too much time on one problem if there are other problems that you haven’t answered yet.
There are 100 total points and 110 minutes to take the exam.

• No books, notes, or electronic devices may be used during the exam. You may not communicate
with other students during the exam, but please ask the instructor / TAs if you need clarification for
some problem.

Problem 1 (16 points):

Problem 2 (20 points):

Problem 3 (28 points):

Problem 4 (24 points):

Problem 5 (12 points):

TOTAL (100 points):

Page 1 of 13



Problem 1 (16 points):
Answer the following questions with a few words or sentences:

A. What are the two key abstractions that processes provide for programmers?

Logical control flow: each process appears to have exclusiveuse of the CPU.
Private virtual address space: each process appears to haveexclusive use of main memory.

B. After an exception occurs and the operating system’s exception handler finishes running, one ofthree
things may happen. What are these three possible actions?

1. The current instruction may be re-executed (e.g. after a page fault).
2. The next instruction may be executed (e.g. after a trap fora system call).
3. The running process may be aborted.

C. Describe one way to achieve goodspatial localityin the programs that you write.

Ways to achieve good spatial locality: generally, write your code so that nearby items are accessed close
together in time. For example, minimize the stride length when iterating through arrays in memory;
access two-dimensional arrays in row-order, rather than column-order; execute long sequences of in-
structions (“straight-line code”) and avoid frequent jumps; perform loop transformations (e.g. blocked
matrix multiplication) to ensure that all data brought intothe cache is used immediately.

D. In a computer system that uses virtual memory, how many page tables are in the system?

One page table per process.

Page 2 of 13



Problem 2 (20 points):
A bitmap image is composed of pixels. Each pixel in the image is represented using four values: three for
the primary colors (red, green and blue - RGB) and one for the transparency information defined as an alpha
channel.

In this problem, you will evaluate the cache performance of code that traverses a bitmap of pixels. You will
use adirect-mapped cache of size 512 bytes with 8-byte blocks.

You are given the following definitions:

typedef struct {
char r;
char g;
char b;
char a;

} pixel;

pixel bitmap[16][16];
int i, j;
int sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0;

Also assume that:

• sizeof(char) = 1.

• bitmap begins at memory address0.

• The cache is initially empty.

• Thebitmap array is stored in row-major order.

• The variables with typeint are stored in registers and any access to these variables does not cause a
cache miss or impact the cache in any way.

A. How many sets are in the cache?64

B. How many bits are in the block offset?3

C. How many bits are in the set index?6

Page 3 of 13



Problem 2, continued:

D. What percent of the cache reads in the following code will result in a cache miss?

for (i = 0; i < 16; i++){
for (j = 0; j < 16; j++){

sum_r += bitmap[i][j].r;
sum_g += bitmap[i][j].g;
sum_b += bitmap[i][j].b;
sum_a += bitmap[i][j].a;

}
}

Miss rate for reads frombitmap: 12.5%

The first access tobitmap[0][0].r will miss in the cache. Every pixel (every element ofbitmap)
takes up 4 bytes, but cache blocks are 8 bytes, so this cache miss will bring in both bitmap[0][0]
and bitmap[0][1]. Thus, the next seven cache accesses will be hits, followed by another miss on
bitmap[0][2].r. This pattern will continue for the entirebitmap array as we access it in a stride-1
pattern. Missing on one out of every eight cache reads results in a 12.5% miss rate.

E. If the cache size were doubled, what would the miss rate forthe previous part now be?12.5%

Modifying the size of the cache has no impact on the miss rate for this particular code; since pixels are
only read in once and every pixel is used entirely before moving on to the next pixel, we could have an 8
byte cache with a single cache line and the miss rate would still be 12.5%.

F. There are three types of cache misses: cold/compulsory, conflict, and capacity misses. Which of these
types of cache misses occur when the above code is run on the 512 byte cache?

Only cold/compulsory misses. Pixels are eventually evicted from the cache when the second half of the
bitmap is read in, but because these pixels are not read againin the above code, no capacity misses occur.

Page 4 of 13



Problem 3 (28 points):
In this problem you will translate virtual addresses into physical addresses to access data in the memory
hierarchy. If you wish, you may carefully detach this page for use on the following problems; you do not
need to turn in this page.

The system has the following characteristics:

• Memory is byte addressable and memory accesses are to1-byte words (not 4-byte words).

• Virtual addresses are 16 bits wide.

• Physical addresses are 13 bits wide.

• The page size is 512 bytes.

• The TLB is 8-way set associative with 16 total entries.

• There is a single data cache that is 2-way set associative, with a 4 byte block size and 8 sets.

In the following tables,all numbers are given in hexadecimal. The contents of the TLB, the page table for
the first 32 pages, and the data cache are as follows:

TLB
Index Tag PPN Valid

0 09 2 1
12 2 1
10 0 1
08 0 1
05 3 0
13 1 0
10 3 0
18 3 0

1 04 4 0
0C 2 0
12 0 0
08 5 0
06 6 0
03 3 0
07 0 0
02 7 1

Page Table
VPN PPN Valid VPN PPN Valid

00 6 1 10 0 1
01 5 0 11 5 0
02 3 1 12 2 1
03 4 1 13 4 0
04 2 0 14 6 0
05 7 1 15 2 0
06 1 0 16 4 0
07 3 0 17 6 0
08 5 1 18 1 0
09 4 0 19 2 0
0A 3 0 1A 5 1
0B 2 0 1B 7 1
0C 5 0 1C 6 0
0D 6 0 1D 2 0
0E 1 1 1E 3 0
0F 0 0 1F 1 0

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C 12 0 84 06 B2 9C
4 07 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 A1 B2 C4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 16 1 11 C2 11 33 1E 1 00 C0 0F 00

Page 5 of 13



Problem 3, Part 1 (8 points):

Make sure that we can tell yourI’s from yourT’s in your answers to these questions!

A. The box below shows the bits of a virtual address. Indicate(by labeling the diagram) the bits that
would be used to determine the following:

VPO The virtual page offset
VPN The virtual page number
TI The TLB index
TT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN: [15-9]. VPO: [8-0]. TI: [9]. TT: [15-10]

B. The box below shows the bits of a physical address. Indicate (by labeling the diagram) the bits that
would be used to determine the following:
PPO The physical page offset
PPN The physical page number
CO The cache block offset
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

PPN: [12-9]. PPO: [8-0]. CT: [12-5]. CI: [4-2]. CO: [1-0].

Page 6 of 13



Problem 3, Part 2:

Perform the address translation and data cache access for the given virtual address by filling in all of the
parts below with valuesin hex.

If there is a page fault, enter “-” for “PPN” and leave parts C and D blank. If there is a cache miss, enter “-”
for “Cache Byte returned”.

Virtual address: 0x3155

A. Virtual address in binary (one bit per box):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1

B. Address translation:

Parameter Value

VPN 0x18
TLB Index 0x0
TLB Tag 0x0C
TLB Hit? (Y/N) N
Page Fault? (Y/N) Y
PPN 0x -

C. Physical address in binary (one bit per box):
12 11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference:

Parameter Value

Cache Block Offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 7 of 13



Problem 3, Part 3:

Perform the address translation and data cache access for the given virtual address by filling in all of the
parts below with valuesin hex.

If there is a page fault, enter “-” for “PPN” and leave parts C and D blank. If there is a cache miss, enter “-”
for “Cache Byte returned”.

Virtual address: 0x1DDE

A. Virtual address in binary (one bit per box):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0

B. Address translation:

Parameter Value

VPN 0x0E
TLB Index 0x0
TLB Tag 0x07
TLB Hit? (Y/N) N
Page Fault? (Y/N) N
PPN 0x1

C. Physical address in binary (one bit per box):
12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 1 1 1 1 0

D. Physical memory reference:

Parameter Value

Cache Block Offset 0x2
Cache Index 0x7
Cache Tag 0x1E
Cache Hit? (Y/N) Y
Cache Byte returned 0x0F

Page 8 of 13



Problem 4 (24 points):
The table below shows the contents of the heap on a 64-bit big-endian system. The heap is managed by a
dynamic memory allocator that uses an explicit free list like that used in Lab 5. The allocator maintains 8-
byte block alignment, and initially hasFREE LIST HEAD = 0x02200008. As in Lab 5, allocated blocks
begin with asizeAndTags header and have no footer, while free blocks begin with aBlockInfo struct
and have asizeAndTags footer. Bit 0 ofsizeAndTags is set if this block is allocated (TAG USED),
and bit 1 ofsizeAndTags is set if the preceding block is allocated (TAG PRECEDING USED).

If you wish, you may carefully detach this page for use on the following problems; you do not need to turn
in this page.

Address in memory Contents

0x022000e0 0x00000000 00000001

0x022000d8 0x00000000 00000042

0x022000d0 0x0df0adba 0df0adba

0x022000c8 0x0df0adba 0df0adba

0x022000c0 0x0df0adba 0df0adba

0x022000b8 0x0df0adba 0df0adba

0x022000b0 0x00000000 02200008

0x022000a8 0x00000000 02200050

0x022000a0 0x00000000 00000042

0x02200098 0x0df0adba 0df0adba

0x02200090 0xaaaaaaaa aaaaaaaa

0x02200088 0xaaaaaaaa aaaaaaaa

0x02200080 0x00000000 00000021

0x02200078 0x00000000 00000032

0x02200070 0x00000000 00000020

0x02200068 0x00000000 00000020

0x02200060 0x00000000 022000a0

0x02200058 0x00000000 00000000

0x02200050 0x00000000 00000032

0x02200048 0x0df0adba 0df0adba

0x02200040 0x0df0adba 0df0adba

0x02200038 0x0df0adba 0df0adba

0x02200030 0x00000000 00000021

0x02200028 0x00000000 0000002a

0x02200020 0x00000000 00000000

0x02200018 0x00000000 00000000

0x02200010 0x00000000 022000a0

0x02200008 0x00000000 0000002a

0x02200000 0x00000000 02200008

struct BlockInfo {
size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

};

Starting from the first block at
0x02200008 and going towards
higher memory addresses, this heap
contains five blocks: a free block of size
5 words (so there is room for 4 words in
the payload); an allocated block of size
4; a free block of size 6; an allocated
block of size 4; and a free block of size
8. The explicit free list begins with
the first block, which points to the fifth
block, which then points to the third
block.

Page 9 of 13



Problem 4 (24 points):
Note: for each of these problems, assume that the state of theheap is that shown on the previous page - do
not include the effects of any previous problems when answering later problems.

A. Suppose the application callsmalloc(5 ∗ WORD SIZE), requesting a new allocation of 5words.
What address will be returned to the application if the allocator uses afirst-fit policy (meaning it
begins the search for a free block from the beginning of the free list every time)?

0x022000a8 - the first word of the payload for the second blockin the free list. Note that the first block in
the free list has a size of 5 words, but because one word is required for the block header, this request will
not fit in that block.

B. Suppose the application callsmalloc(5 ∗ WORD SIZE), requesting a new allocation of 5words.
What address will be returned to the application if the allocator uses abest-fitpolicy?

0x02200058 - the first word of the payload for the third block in the free list. This block has a size of 6
words, so the request fits exactly in the 5 payload words.

C. The application just calledmalloc(2 ∗ WORD SIZE) to request a new allocation of 2words, and
received the address0x02200088 as a return value. How many payload words does this allocated
block in the heap actually have room for? What is this an example of?

This allocated block actually has room for 3 payload words, meaning that there is 1 extra padding word.
This is an example of internal fragmentation. Note that thisextra padding word is NOT an example of
alignment, because the allocator only requires 8-byte alignment; instead, this extra padding word is kept
in the allocated block because it does not meet the minimum block size for splitting.

Page 10 of 13



Problem 4, continued:

D. Suppose the application callsmalloc(10 ∗ WORD SIZE), requesting a new allocation of 10
words. Even though there are more than 10 free words in the heap, theallocator cannot immedi-
ately handle this request. What is this an example of?

External fragmentation.

E. Suppose the application callsmalloc(10 ∗ WORD SIZE), requesting a new allocation of 10
words. The allocator cannot immediately handle this request - what must the allocator do first be-
fore it will be able to find a suitable free block?

The allocator must extend the program break (“brk”) to obtain more free heap space, by calling the
brk() or sbrk() system call. In Lab 5 speak, the allocator must callrequestMoreSpace().

F. What are the two performance goals that all memory allocators attempt to maximize, but which are
often in conflict with each other?

Throughput and memory utilization.

Page 11 of 13



Problem 5 (12 points):
Answer the following questions with a few words or sentences:

A. What is one difference between references in Java and pointers in C?

C pointers are very general, and basically any arithmetic, casting, or other operation can be performed
on them. Java references differ in these ways: arithmetic cannot be performed on references (only
assignment can be performed); references can only point to the beginning of an object, not into the
middle of it (whereas in C we can use the & operator to get the address of an arbitrary data item);
references can only be cast to “compatible” classes (i.e. parent classes). Also acceptable answers: arrays
are always accessed using references in Java, whereas they may be accessed as offsets from the beginning
of a struct in C; all objects are accessed through referencesin Java, unlike structs in C which may be
accessed via pointers or accessed directly.

B. Consider the following Java class declaration. How manydereference operationsare performed every
time a Point object’ssamePlace()method is called?

class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}

Three dereference operations are needed to get to the code for the method itself: one dereference for
the object’s reference in the code, one dereference for the vtable pointer, and one dereference for the
pointer tosamePlace() within the vtable. Four more dereference operations are performed inside of
the method itself: this.x, p.x, this.y, and p.y. Remember that a “this” reference is passed as an implicit
first argument to every non-static Java method. (Note that when this question was graded, full points
were given for remembering either the vtable dereferences or the “this” dereferences.)

C. What is the main advantage of interpreting Java code in a virtual machine, as opposed to compiling it
to machine code ahead of time as is done for C?

Portability across different system architectures: the Java source code can be compiled just once to byte-
code that can be interpreted on any system that has a JVM. (Note for grading: “it can run on any system”
is not a complete answer, because C code can be run on any system that it is compiled for as well.)

Page 12 of 13



References

If you wish, you may carefully detach this page from the exam;you do not need to turn in this page.

Powers of 2:

2
0
= 1

2
1
= 2 2

−1
= 0.5

2
2
= 4 2

−2
= 0.25

2
3
= 8 2

−3
= 0.125

2
4
= 16 2

−4
= 0.0625

2
5
= 32 2

−5
= 0.03125

2
6
= 64 2

−6
= 0.015625

2
7
= 128 2

−7
= 0.0078125

2
8
= 256 2

−8
= 0.00390625

2
9
= 512 2

−9
= 0.001953125

2
10

= 1024 2
−10

= 0.0009765625

2
a
∗ 2

b
= 2

a+b

2
a/2b = 2

a−b

Hexadecimal to binary conversion:

0x0 = 0000
0x1 = 0001
0x2 = 0010
0x3 = 0011
0x4 = 0100
0x5 = 0101
0x6 = 0110
0x7 = 0111
0x8 = 1000
0x9 = 1001
0xA = 1010
0xB = 1011
0xC = 1100
0xD = 1101
0xE = 1110
0xF = 1111

Hexadecimal to decimal conversion:

0x10 = 16
0x20 = 32
0x30 = 48
0x40 = 64
0x50 = 80
0x60 = 96
...

Page 13 of 13


