Full Name:
Student ID #:

UW CSE 351, Winter 2013

Final Exam

March 20, 2013
2:30pm - 4:20pm

Instructions:

e Write your full name and UW student ID number on the front a& #txam. When the exam begins,
make sure that your copy is not missing any of the 13 pagesépfoceeding.

e Read over the entire exam before starting to work, and betewarefully read the instructions for
every problem.

o Write your answers in the space provided below or next to paaiblem. If you make a mess, clearly
indicate your final answeBe sureto answer all parts of all questions!

e Some pages can be removed from the exam to avoid flipping batkoath while working on the
problems. A note at the top of the page will indicate theseepadf you remove these pages, make
sure that the rest of your exam is still securely fastened.

e Don't spend too much time on one problem if there are otheplpros that you haven't answered yet.
There are 100 total points and 110 minutes to take the exam.

e No books, notes, or electronic devices may be used during the exam. You may not communicate
with other students during the exam, but please ask theustetr/ TAs if you need clarification for
some problem.

Problem1 (16 points):

Problem 2 (20 points):

Problem 3 (28 points):

Problem 4 (24 points):

Problem5 (12 points):

TOTAL (100 points):

Page 1 of 13

Problem 1 (16 points):

Answer the following questions with a few words or sentences

A. What are the two key abstractions that processes providarégrammers?

Logical control flow: each process appears to have exclusige of the CPU.
Private virtual address space: each process appears to lexetusive use of main memory.

B. After an exception occurs and the operating system’smiarehandler finishes running, onetbfee
things may happen. What are these three possible actions?

1. The current instruction may be re-executed (e.g. afterage fault).
2. The next instruction may be executed (e.g. after a trap fosystem call).
3. The running process may be aborted.

C. Describe one way to achieve gogghatial localityin the programs that you write.

Ways to achieve good spatial locality: generally, write yamode so that nearby items are accessed close
together in time. For example, minimize the stride length e iterating through arrays in memory;
access two-dimensional arrays in row-order, rather thanl@mn-order; execute long sequences of in-
structions (“straight-line code”) and avoid frequent jurrg perform loop transformations (e.g. blocked
matrix multiplication) to ensure that all data brought intéhe cache is used immediately.

D. In a computer system that uses virtual memory, how mang felges are in the system?
One page table per process.

Page 2 of 13

Problem 2 (20 points):

A bitmap image is composed of pixels. Each pixel in the imagepresented using four values: three for
the primary colors (red, green and blue - RGB) and one forrtivesparency information defined as an alpha
channel.

In this problem, you will evaluate the cache performanceoofecthat traverses a bitmap of pixels. You will
use adirect-mapped cache of size 512 bytes with 8-byte blocks.

You are given the following definitions:

t ypedef struct {
char r;
char g;
char b;
char a;
} pixel;

pi xel bitnmap[16][16];
int i, j;
int sumr =0, sumg =0, sumb = 0, suma = 0;
Also assume that:
e si zeof (char) = 1.
e bi t map begins at memory addre8s
e The cache is initially empty.
e Thebi t map array is stored in row-major order.

e The variables with typent are stored in registers and any access to these variablesdbeause a
cache miss or impact the cache in any way.

A. How many sets are in the caché2
B. How many bits are in the block offse8?

C. How many bits are in the set indeg?

Page 3 of 13

Problem 2, continued:

. What percent of the cache reads in the following code w8glit in a cache miss?

for (i =0; I <16; i++){
for (j =0; j <16; j++){
sumr += bitmap[i][j].r;
sumg += bitmap[i][j].Q;
sumb += bitmap[i][j].b;
suma += bitmap[i][j].a;

Miss rate for reads frorbi t map: 12.5%6

The first access tdi t map[0] [O] . r will miss in the cache. Every pixel (every elementloif t map)
takes up 4 bytes, but cache blocks are 8 bytes, so this caclss mill bring in both bi t map[0] [0]
and bi tmap[O] [1] . Thus, the next seven cache accesses will be hits, followgditother miss on
bi t map[0] [2] . r. This pattern will continue for the entirébi t map array as we access it in a stride-1
pattern. Missing on one out of every eight cache reads resufta 12.5% miss rate.

. If the cache size were doubled, what would the miss ratthéoprevious part now bel2.5%6

Modifying the size of the cache has no impact on the miss rate this particular code; since pixels are
only read in once and every pixel is used entirely before nmgyvon to the next pixel, we could have an 8
byte cache with a single cache line and the miss rate would b 12.5%.

. There are three types of cache misses: cold/compulsariljat, and capacity misses. Which of these
types of cache misses occur when the above code is run on 2heyfd cache?

Only cold/compulsory misses. Pixels are eventually evdci®m the cache when the second half of the
bitmap is read in, but because these pixels are not read agaitihe above code, no capacity misses occur.

Page 4 of 13

Problem 3 (28 points):

In this problem you will translate virtual addresses intygbal addresses to access data in the memory
hierarchy. If you wish, you may carefully detach this pageuse on the following problems; you do not

need to turn in this page.

The system has the following characteristics:

e Memory is byte addressable and memory accesses arbytte wor ds (not 4-byte words).

e Virtual addresses are 16 bits wide.

e The TLB is 8-way set associative with 16 total entries.

The page size is 512 bytes.

Physical addresses are 13 bits wide.

e There is a single data cache that is 2-way set associatitle awi byte block size and 8 sets.

In the following tablesall numbersare given in hexadecimal. The contents of the TLB, the page table for
the first 32 pages, and the data cache are as follows:

TLB Page Table

Index| Tag PPN Valid VPN PPN Valid VPN PPN Valid

0 09 2 1 o0 6 1|10 0 1
12 2 1 o1 5 0|1 5 0
10 0 1 02 3 1|12 2 1
08 0 1 03 4 113 4 0
05 3 0 o4 2 0|14 6 O
13 1 0 5 7 115 2 0
10 3 0 o6 1 0|16 4 O
18 3 0 o7 3 0|17 6 0

1 04 4 0 o8 5 118 1 0
oc 2 0 09 4 019 2 0
12 0 0 OA 3 0 |1A 5 1
08 5 0 oB 2 0|1 7 1
06 6 0 oc 5 0|1C 6 ©
03 3 0 ob 6 0|1 2 0
07 0 0 OE 1 1|1 3 0
02 7 1 OF 0 O0O]1F 1 O

2-way Set Associative Cache

IndeX| Tag ValidByte 0 Byte 1 Byte 2 Byte § Tag ValidByte 0 Byte 1 Byte 2 Byte

0

NOoO ok~ WN B

19
15
1B
06
07
0D
11
16

1

P OFP, OORFO

99
4F
00
84
43
36
A2
11

11
22
02
06
6D
32
37
C2

23
EC
04
B2
8F
00
68

11

11
11
08
9C
09
78
31
33

00
2F
0B
12
05
1E
00
1E

0 99
55
01
84
43
Al
BB
00

PR R OORR

11
59
03
06
6D
B2
77
Co

23
0B
05
B2
8F
C4
33
OF

11
41
07
9C
09
DE
00
00

Page 5 of 13

Problem 3, Part 1 (8 points):
Make sure that we can tell youis from yourT's in your answers to these questions!

A. The box below shows the bits of a virtual address. Indi¢htelabeling the diagram) the bits that
would be used to determine the following:

VPO The virtual page offset
VPN The virtual page number
Tl The TLB index
TT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

VPN: [15-9]. VPO: [8-0]. TI: [9]. TT: [15-10]

B. The box below shows the bits of a physical address. Ingliflat labeling the diagram) the bits that
would be used to determine the following:
PPO The physical page offset
PPN The physical page number
CO The cache block offset
Cl The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

PPN: [12-9]. PPO: [8-0]. CT: [12-5]. CI: [4-2]. CO: [1-0].

Page 6 of 13

Problem 3, Part 2:

Perform the address translation and data cache accessfgivin virtual address by filling in all of the
parts below with valuem hex.

If there is a page fault, enter “-” for “PPN” and leave partsr@ ® blank. If there is a cache miss, enter “-”
for “Cache Byte returned”.

Virtual address; 0x3155

A. Virtual address in binary (one bit per box):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0JoJ1f1foJofo[1]O0[1[0[21[O0[1[0]1]

B. Address translation:

| Parameter | Value \
VPN 0x18
TLB Index 0x0
TLB Tag 0x0C

TLB Hit? (Y/N) N
Page Fault? (Y/N) Y
PPN 0x -

C. Physical address in binary (one bit per box):
12 11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference:

| Parameter | Value
Cache Block Offset | 0x
Cache Index Ox
Cache Tag 0x

Cache Hit? (Y/N)
Cache Byte returned 0x

Page 7 of 13

Problem 3, Part 3:

Perform the address translation and data cache accessfgivin virtual address by filling in all of the
parts below with valuem hex.

If there is a page fault, enter “-” for “PPN” and leave partsr@ ® blank. If there is a cache miss, enter “-”
for “Cache Byte returned”.

Virtual address; 0x 1 DDE

A. Virtual address in binary (one bit per box):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0JoJof1[1]2fO[1[2[2[0[21[1[1[1]0]

B. Address translation:

| Parameter | Value \
VPN OxOE
TLB Index 0x0
TLB Tag 0x07

TLB Hit? (Y/N) N
Page Fault? (Y/N) N
PPN 0ox1

C. Physical address in binary (one bit per box):
12 11 10 9 8 7 6 5 4 3 2 1 0

(0JoJof1[1[2[1[0]1]1[1[1]0O]

D. Physical memory reference:

| Parameter | Value
Cache Block Offset| 0x2
Cache Index 0x7
Cache Tag Ox1E

Cache Hit? (Y/IN) |Y
Cache Byte returned OxOF

Page 8 of 13

Problem 4 (24 points):

The table below shows the contents of the heap on a 64-bigrmiian system. The heap is managed by a
dynamic memory allocator that uses an explicit free list likat used in Lab 5. The allocator maintains 8-
byte block alignment, and initially h&REE_L1 ST_HEAD = 0x02200008. AsinLab 5, allocated blocks
begin with asi zeAndTags header and have no footer, while free blocks begin with ackl nf o struct
and have &i zeAndTags footer. Bit 0 ofsi zeAndTags is set if this block is allocatedTAG_.USED),

and bit 1 ofsi zeAndTags is set if the preceding block is allocateBAG_PRECEDI NG_.USED).

If you wish, you may carefully detach this page for use on tiklewing problems; you do not need to turn

in this page.

Addressin memory | Contents

0x022000e0 0x00000000 00000001
0x022000d8 0x00000000 00000042
0x022000d0 0x0df Oadba 0df Oadba
0x022000c8 0x0df Oadba 0df Oadba
0x022000c0 0x0df Oadba 0df Oadba
0x022000b8 0x0df Oadba 0df Oadba
0x022000b0 0x00000000 02200008
0x022000a8 0x00000000 02200050
0x022000a0 0x00000000 00000042
0x02200098 0x0df Oadba 0df Oadba
0x02200090 Oxaaaaaaaa aaaaaaaa
0x02200088 Oxaaaaaaaa aaaaaaaa
0x02200080 0x00000000 00000021
0x02200078 0x00000000 00000032
0x02200070 0x00000000 00000020
0x02200068 0x00000000 00000020
0x02200060 0x00000000 022000a0
0x02200058 0x00000000 00000000
0x02200050 0x00000000 00000032
0x02200048 0x0df Oadba 0df Oadba
0x02200040 0x0df Oadba 0df Oadba
0x02200038 0x0df Oadba 0df Oadba
0x02200030 0x00000000 00000021
0x02200028 0x00000000 0000002a
0x02200020 0x00000000 00000000
0x02200018 0x00000000 00000000
0x02200010 0x00000000 022000a0
0x02200008 0x00000000 0000002a
0x02200000 0x00000000 02200008

struct Bl ocklnfo {
size_t sizeAndTags;
struct Bl ockl nfo* next;
struct Bl ockl nfo* prev;

}s

Starting from the first block at
0x02200008 and going towards
higher memory addresses, this heap
contains five blocks: a free block of size
5 words (so there is room for 4 words in
the payload); an allocated block of size
4: a free block of size 6; an allocated
block of size 4; and a free block of size
8. The explicit free list begins with
the first block, which points to the fifth
block, which then points to the third
block.

Page 9 of 13

Problem 4 (24 points):

Note: for each of these problems, assume that the state betqeis that shown on the previous page - do
not include the effects of any previous problems when anggdater problems.

A. Suppose the application cal®l | oc(5 * WORD_SI ZE) , requesting a new allocation ofvords
What address will be returned to the application if the atoc uses dirst-fit policy (meaning it
begins the search for a free block from the beginning of tbe fist every time)?

0x022000a8 - the first word of the payload for the second blatkhe free list. Note that the first block in
the free list has a size of 5 words, but because one word is ireglfor the block header, this request will
not fit in that block.

B. Suppose the application cattsl | oc(5 * WORD_SI ZE) , requesting a new allocation ofvords
What address will be returned to the application if the atoc uses dest-fitpolicy?

0x02200058 - the first word of the payload for the third bloak the free list. This block has a size of 6
words, so the request fits exactly in the 5 payload words.

C. The application just callegtal | oc(2 * WORD_SI ZE) to request a new allocation ofvizords and
received the addre€x 02200088 as a return value. How many payload words does this allocated
block in the heap actually have room for? What is this an examoi?

This allocated block actually has room for 3 payload wordseaming that there is 1 extra padding word.
This is an example of internal fragmentation. Note that thixtra padding word is NOT an example of
alignment, because the allocator only requires 8-byte aligent; instead, this extra padding word is kept
in the allocated block because it does not meet the minimumcklsize for splitting.

Page 10 of 13

Problem 4, continued:

D. Suppose the application calfel | oc(10 * WORD_SI ZE) , requesting a new allocation of 10
words Even though there are more than 10 free words in the heamlltteator cannot immedi-

ately handle this request. What is this an example of?

External fragmentation.

E. Suppose the application caksal | oc(10 « WORD_SI ZE) , requesting a new allocation of 10
words The allocator cannot immediately handle this request -twast the allocator do first be-

fore it will be able to find a suitable free block?

The allocator must extend the program break (“brk”) to obtaimore free heap space, by calling the
br k() orsbrk() system call. In Lab 5 speak, the allocator must cakquest Mor eSpace() .

F. What are the two performance goals that all memory alosadttempt to maximize, but which are
often in conflict with each other?

Throughput and memory utilization.

Page 11 of 13

Problem 5 (12 points):

Answer the following questions with a few words or sentences

A. What is one difference between references in Java andgusim C?

C pointers are very general, and basically any arithmetigsting, or other operation can be performed
on them. Java references differ in these ways: arithmeticncat be performed on references (only
assignment can be performed); references can only point the beginning of an object, not into the
middle of it (whereas in C we can use the & operator to get thedegbs of an arbitrary data item);
references can only be cast to “compatible” classes (i.ergue classes). Also acceptable answers: arrays
are always accessed using references in Java, whereas thaybma accessed as offsets from the beginning
of a struct in C; all objects are accessed through referendgeslava, unlike structs in C which may be
accessed via pointers or accessed directly.

B. Consider the following Java class declaration. How ndengference operatiorere performed every
time a Point objectsanePl ace() method is called?

class Point {
doubl e x;
doubl e y;

Poi nt ()
X =

{
0;
y = 0;

}

bool ean sanePl ace(Poi nt p) {
return (x == p.x) && (y == p.y);
}
}

Three dereference operations are needed to get to the codéhi® method itself: one dereference for
the object’s reference in the code, one dereference for thable pointer, and one dereference for the
pointer tosanmePl ace() within the vtable. Four more dereference operations are fegmed inside of
the method itself: this.x, p.x, this.y, and p.y. Remembeattia “this” reference is passed as an implicit
first argument to every non-static Java method. (Note thatewhthis question was graded, full points
were given for remembering either the vtable dereferencethe “this” dereferences.)

C. What is the main advantage of interpreting Java code in@aimachine, as opposed to compiling it
to machine code ahead of time as is done for C?

Portability across different system architectures: thevdasource code can be compiled just once to byte-
code that can be interpreted on any system that has a JVM. @Not grading: “it can run on any system”
is not a complete answer, because C code can be run on anysystat it is compiled for as well.)

Page 12 of 13

References

If you wish, you may carefully detach this page from the exgou do not need to turn in this page.

Powers of 2:
20 =1
ol — 271 =05
22— 272 =10.25
23 = 273 =0.125
21 =16 24 = 0.0625
20 =32 2% =0.03125
26 — 64 276 =0.015625
27 =128 2-7 =0.0078125
28 = 256 278 = 0.00390625
29 = 512 279 =0.001953125
210 — 1024 2-10 = 0.0009765625

20 % 20 = 20+b

2a/2b — 2a—b

Hexadecimal to binary conversion: Hexadecimal to decimal conversion:

0x0 = 0000 0x10 = 16
0x1 = 0001 0x20 = 32
0x2 = 0010 0x30 = 48
0x3 0011 0x40 64
0x4 0100 0x50 80
0x5 0101 0x60 96
0x6 = 0110
0x7 = 0111
0x8 1000
0x9 1001
OxA = 1010
0xB = 1011
0xC = 1100
0xD = 1101
OxE = 1110
OxF 1111

Page 13 of 13

