
Name

Student ID

UW CSE 351, Summer 2013
Midterm Exam

Instructions:
• Make sure that your exam is not missing any of the 12 pages, then write your full name and

UW student ID on the front.

• Read over the entire exam before starting to work on the problems! The last page is a
reference page that you may tear off to use during the exam; it does not have to be turned in.

• Feel free to use the backs of pages for working on problems, but write your answers in the
space provided below each problem. If you make a mess, clearly indicate your final answer.
Be sure to answer all parts of all questions.

• Do not spend too much time on a problem if there are other easy problems that you haven’t
solved yet.

• No books, notes, or electronic devices may be used during the exam. You may not
communicate with other students during the exam, but please ask the instructor if you need
clarification for some problem.

• If you read this far, smile and have fun!

Section Awarded Possible

Section 1 5

Section 2 25

Section 3 40

Section 4 30

Total 100

1 of 12

Note: This exam was tough and about 10-15% too long in retrospect. Some questions in section
4 were especially subtle. We graded by adding a buffer to everyone’s absolute score to reflect
the fact that the exam was too long. Answers within often go into more detail than needed for
completing the exam.

2 of 12

1. Instruction Set Architectures (5 points)
(a) The original x86 processor, the Intel 8086, had a word size of 16 bits. What does word

size mean and what does it determine in a computer system? (one or two sentences)
Word size defines register size; it is the largest piece of data a CPU operates on
at once. In machines we have looked at, it is also the same as the size of an ad-
dress/pointer and in all machines it puts a bound on the size of an address, and
hence the addressable memory.
Some people defined word size in terms of basic units of memory accesses, but recall
that memory is still byte-addressable. Every byte of memory may be read and written
individually, even if the system really moves around a full word (or more) on every
access.

(b) Circle all of the features below that are part of the instruction set architecture of a
machine:

i. The number of registers.
ii. The number of machine cycles to execute a single instruction.

iii. The effect that a certain instruction has on memory and registers when executed.
iv. The condition codes and what causes them to be set.
v. The available memory addressing modes.

vi. The machine word size.

All except (ii). The ISA defines the parts of the machine an assembly programmer
needs to know about to understand what a program does. The number of cycles per
instruction does not affect what the program does.

2. Numbers and Bits (25 points)
(a) (3 points) Is there anything wrong with the code below? If so, name one thing. Assume

that n is the number of elements in the values array. (Write one or two sentences.)

double product_except(int n, float values[], float skip) {
float prod = 1.0;
int i;
for (i = 0; i < n; i++) {

if (values[i] != skip) {
prod = prod * values[i];

}
}
return (double)prod;

}

There are things that can go wrong: 1. floating point values should never be
compared for equality, due to rounding imprecision; 2. the multiplication of floats
could result in overflow (e.g., reaching positive or negative inifinity). Either of these
answers received full credit. Rounding float to double is not a problem, since there’s
always enough space in a double to store the value of a float without rounding.

3 of 12

(b) (8 points) Consider a machine with 6-bit integers. (While we generally use powers of
two today, 36-bit words with 6-bit characters were commonplace several decades ago.)

i. What are the binary and decimal representations of the sum of these two’s comple-
ment signed integers represented in binary? (Please write the sum both in binary
and in decimal.)

100101 + 011101 = -27 + 29 (not required as part of answer)

binary: 000010

decimal: 2

ii. What are the binary and decimal value of the sum of the 6-bit two’s complement
representations of these signed integers (shown here in decimal)? (Please write the
sum both in binary and in decimal.)

(-24) + (-12) = 101000 + 110100 (not required as part of answer, but this trans-
lation tripped up a few people)

binary: 011100

decimal: 28

iii. Either your answer for (i) or your answer for (ii) should be different than the
answer for arithmetic on the equivalent mathematics integers. Which one? What
is the name of the condition that causes it to be different?
(ii) is different. Modular arithmetic gives us 28 instead of -36 due to overflow.

(c) (4 points) What are two disadvantages to sign and magnitude integer representation as
compared to two’s complement? (one sentence or phrase each)
There are two representations of 0.
The addition algorithm for signed numbers is different than that for unsigned
(also positive vs. negative), and is more cumbersone.
On the other hand, two’s complement has a single representation of 0, and a single
addition algorithm

4 of 12

(d) (10 points) Design a space-efficient encoding of the latitude, longitude, and altitude
of a satellite’s position relative to Earth using only a single 32-bit C int to store all of
this information at once. It must be easy to retrieve the individual dimensions from the
encoded position. Signed latitudes range from -90 to +90 in increments of 1 and signed
longitudes range from -180 to +179 in increments of 1. The satellite altitude (in your
favorite units) ranges from zero to some maximum in increments of 1.

i. Allocate the 32 available bits below by bracketing and labeling which bits belong
to which dimensions. Put the latitude in the highest order bits, followed by the
longitude, followed by the altitude in the lowest order bits. Be sure to maximize
the altitude you can represent.

latitude (signed), 8 bits: −(28−1) = −128 <= −90 < −(27−1) = −64
longitude (signed), 9 bits: −(29−1) = −256 <= −180 < −(28−1) = −128
altitude (unsigned), 15 bits: 32 - 8 - 9

latitude: 31 - 24 | longitude: 23 - 15 | altitude: 14 - 0

31 30 29 28 27 26 25 24|23 22 21 20 19 18 17 16 15|14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ii. What is the maximum altitude your encoding can represent? You may write an
expression involving exponents and/or arithmetic.
215 − 1, due to 15 bits unsigned (altitudes are non-negative...)

iii. Implement a function to retrieve the longitude as a signed 32-bit int given an
int encoded using your answer to (i). Only bitwise operators, shifts, and addi-
tion/subtraction are allowed, for efficiency. You may use local variables, but they
are not necessary.
int get_longitude(int position) {

return (position << 8) >> (8 + 15);
}

It was necessary to shift left before shifting right so that the sign bit of longi-
tude would be preserved by arithmetic shift right .

5 of 12

3. Reverse Engineering Stacks and Procedures (40 points)

There are questions that use the code below on the following pages. You may tear this
page out carefully if you want to avoid flipping back for reference. You must turn this
page in, but it does it not need to be attached to the rest of your exam.

Running short on sleep after a research paper deadline, your instructor accidentally removed
several important files for a C program! Fortunately, the compiled machine code survived,
but he needs your help reverse-engineering it. He remembers that the code uses a linked list
of integers, with each node in the list represented by the following type:

typedef struct list_node {
int value;
struct list_node * next;

} list_node;

Each list_node stores an int value and a pointer (next) to the next list_node
in the list. The last element in a list stores the address 0x0 in its next field, showing that
there is no next element after the last element.

Additionally, we know that mystery looks like this:
int mystery(list_node* current) { ... }

The following machine code has been recovered and disassembled:

0x080483a0 <mystery>:
0x080483a0 <+0>: push %ebp
0x080483a1 <+1>: mov %esp,%ebp
0x080483a3 <+3>: sub $0x8,%esp
0x080483a6 <+6>: mov 0x8(%ebp),%edx
0x080483a9 <+9>: mov 0x4(%edx),%eax
0x080483ac <+12>: test %eax,%eax <-- Pause for (c).
0x080483ae <+14>: jne 0x80483b4 <mystery+20>
0x080483b0 <+16>: mov (%edx),%eax
0x080483b2 <+18>: jmp 0x80483bc <mystery+28>
0x080483b4 <+20>: mov %eax,(%esp)
0x080483b7 <+23>: call 0x80483a0 <mystery>
0x080483bc <+28>: leave <-- Stop for (d).
0x080483bd <+29>: ret

0x080483bb <intrigue>:
... <-- Start.
0x080483eb <+48>: call 0x80483a0 <mystery>
0x080483f0 <+53>: mov %eax,0x2c(%esp)
...

Section 3 continues on the next page.

6 of 12

3. [Continued] Reverse Engineering Stacks and Procedures (40 points)

We have provided you with the state of the heap and the stack just before executing the call
instruction in intrigue at 0x080483eb. Questions (a) through (e) on the next page will
guide you through filling the blanks in this diagram. Feel free to make notes in the margins,
but make sure all labels requested in (a) through (e) are clearly visible. (Hints: you should
not need more stack space than we have drawn and the heap contents will not change.)

Stack initial %ebp = 0xffffff58 initial %esp = 0xffffff4c

Address Value Description of value
0xffffff4c 0x0b000000 (b) argument to mystery (list_node*)

0xffffff48 0x080403f0 (b) return address in intrigue

0xffffff44 0xffffff5b (b) saved %ebp

0xffffff40 (b) unused

0xffffff3c 0x0b000018 (d) argument to mystery (list_node*)

0xffffff38 0x080403bc (d) return address in mystery

(d) %ebp → 0xffffff34 0xffffff44 (d) saved %ebp

0xffffff30 (d) unused

(d) %esp → 0xffffff2c (d) unused

Heap
Address Value Description of these 8 bytes

0x0b00001c 0x0 (next) list node (a)
0x0b000018 351 (value)

...
0x0b000004 0x0b000018 list node (a)
0x0b000000 341

Section 3 continues on the next page.

7 of 12

3. [Continued] Reverse Engineering Stacks and Procedures (40 points)
These questions refer to the diagrams and code on the previous two pages.

(a) (3 points) Based on mystery’s signature and the initial state of the stack, the heap, and
the %ebp and %esp registers immediately before the call instruction at 0x080483eb
is executed, label the type of what should be stored in the 8 bytes of memory at
0x0b000000 and the 8 bytes of memory at 0x0b000018. See previous page.

(b) (10 points) Next, simulate the execution of the program starting just before the call in-
struction at 0x080483eb. Stop just before you reach the test instruction at 0x080483ac.
Fill in the stack diagram as your simulation progresses, writing each value stored on
the stack and a description of what this value represents. Write “unused” if the location
is not used. You may find it helpful to look ahead to part (e) of this problem to consider
as you simulate the program. See previous page.

(c) (4 points) What is the combined purpose of the test instruction at 0x080483ac and
the following jne instruction at 0x080483ae? (one sentence or phrase)
It tests to see whether the next pointer in the current list node is 0 (end of list).
You also got credit if you described this at the assembly level since the question did
not specify which...

(d) (10 points) Continue simulating execution and filling in the stack diagram until just be-
fore you execute a leave instruction, and then label where the frame pointer (“←%ebp”)
and stack pointer (“←%esp”) point. See previous page.

(e) (10 points) We just heard that the original C code had the following structure! Using
what you now know about mystery, fill in the blank lines with C code, using no
variables except current in your expressions. Do not write register names.
There are a few equivalent versions. Here’s one.

int mystery(list_node* current) {
if(current->next == 0) {
return current->value;

}
return mystery(current->next);

}

(f) (3 points) Congratulations, you recovered the lost code! Explain what mystery does
with its linked list argument. (one or two sentences)
mystery returns the value in the last node in a linked list.

8 of 12

4. Translating C Arrays to Memory and Assembly (30 points)
The following two C functions appear to perform the same operations: setting all elements in
the diagonal of a matrix to their index within the diagonal. For example, matrix[3][3]
gets set to 3. However, they are subtly different.
void diagonalA(int n, int* matrix[]) {
int i;
for (i = 0; i < n; i++) {
matrix[i][i] = i;

}
}
void diagonalB(int n, int matrix[4][4]) {

int i;
for (i = 0; i < n; i++) {

matrix[i][i] = i;
}

}
For each statement below, create a true statement by filling the blank with one of:

• “Only A” if the statement is only true of diagonalA;

• “Only B” if the statement is only true of diagonalB;

• “Neither” if it is true of neither; or

• “Both” if it is true of both.

Additionally, where asked, explain how or why this is the case in a brief sentence or phrase.

(a) (5 points) Only B uses multi-dimensional (2D) arrays, while Only A uses multi-level
(2-level) arrays. What is the difference and how can you tell from the type?
A uses an array of int pointers (which, in this case, are also pointers to int arrays).
A’s array of pointers is contiguous in memory, but the sub-arrays they point may
not be. B uses a fixed-size 2D array: an array of int arrays, allocated contiguously
in row-major form.

(b) (2 points) Both could lead to a segmentation fault. How/why?
Even if we assume the matrix argument well-formed, given the wrong n, both
can write outside the bounds of the arrays they are given.

(c) (5 points) Only B could generate memory accesses to this sequence of addresses if the
base address of the matrix array is 0x4000 and n = 4:
0x4000, 0x4014, 0x4028, 0x403c. How/why?
These addresses represent accesses of the form 0x4000 + 4*sizeof(int)*i + 4*i (for i
from 0 to n - 1) to a contiguous block of memory, with one access per iteration.
Even a two-level array a with a[0] = &a[1], would still need 8 accesses instead of 4.

9 of 12

(d) (5 points) Only A could generate memory accesses to this sequence of addresses if the
base address of the matrix array is 0x4000 and n = 4:
0x4000, 0x4800, 0x4004, 0x568c, 0x4008, 0x4600, 0x400c, 0x4800
How/why?
These are accesses to pointers stored in the top-level array, a contiguous block of
memory (of the form base address + sizeof(int*)*i: 0x4000, 0x4004, 0x4008,
0x400c), interleaved with accesses to sub-arrays elsewhere in memory. (0x4800,
0x568c, 0x4600, 0x4800.
If you chose “Only A” and you mentioned something about non-contiguous memory
or 2 accesses for every iteration, you got credit.

(e) (3 points) Neither could lead to a buffer overflow in the current stack frame, corrupting
the return address so that when diagonalA/B returns, it starts executing an attacker’s
code instead. How/why?
The arrays used by these functions are not allocated in the stack frames of these
functions, so writing past the ends of the arrays cannot write in these stack frames
or immediate return addresses.
This was admittedly tricky, and I wish I had asked a more straightforward question.
You got 1 point if you explained that there could be a buffer overflow by writing past
the end of the arrays. But it turns out it is impossible to write in diagonalA/B’s stack
frame or return address because of this.
Neither diagonalA nor diagonalB is operating on an array allocated in its own stack
frame, so assuming the array is allocated in some stack frame, it must be allocated
higher in memory than the return address for diagonalA/B (in the caller of diagonalA/B
or its caller or ...). Thus, even if we write past the end of the array, we are overwriting
the stack frame in which the array was allocated, not diagonalA/B’s stack frame or the
return address it should use. Thus, there’s no way to overwrite that return address, and
when diagonalA/B returns, it always returns to its caller. Perhaps its caller (or its caller
or ...) will have a corrupted return value, but not
Getting even more far-fetched: if the array was allocated on the heap and the attacker
chose a large enough n, the return address for diagonalB might eventually get overwrit-
ten. Even then, it would take great luck to be at the right alignment and i to write when
reaching the return address slot on the stack. Overwriting past the size of the top-level
array in diagonalA would likely cause a segmentation fault when treating garbage as a
pointer to a sub-array.
Even the most likely option is unlikely: causing the program to pass just the right bogus
array address argument, where that address is below the addresses of the diagonalA/B
stack frame (in unallocated memory). In this case, the “attacker” still needs to cause
your program to pass that right bogus address, perhaps via another buffer overflow.

(f) (10 points) Only A could be correctly compiled to this assembly code (question below):

080483f4 <diagonalMystery>:
80483f4: 55 push %ebp
80483f5: 89 e5 mov %esp,%ebp

10 of 12

80483f7: 53 push %ebx
80483f8: 8b 4d 08 mov 0x8(%ebp),%ecx
80483fb: 8b 5d 0c mov 0xc(%ebp),%ebx
80483fe: 85 c9 test %ecx,%ecx
8048400: 7e 12 jle 8048414 <diagonalMystery+0x20>
8048402: b8 00 00 00 00 mov $0x0,%eax
8048407: 8b 14 83 mov (%ebx,%eax,4),%edx
804840a: 89 04 82 mov %eax,(%edx,%eax,4)
804840d: 83 c0 01 add $0x1,%eax
8048410: 39 c8 cmp %ecx,%eax
8048412: 75 f3 jne 8048407 <diagonalMystery+0x13>
8048414: 5b pop %ebx
8048415: 5d pop %ebp
8048416: c3 ret

What was your key observation?
There are many ways to answer this. One is: There are two memory accesses every
time around the loop: one to read the pointer (0x8048407) to the sub-array and
one to write into the sub-array using an offset from its base address (0x804840a).
Full credit was given for picking A and backing it up with a feasible explanation. Partial
credit was give for picking A but noting a false reason or for picking something other
than A and noting something true and relevant about the code.

11 of 12

Reference

1. Hex Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2. Powers of Two

20 = 0x0001 = 1 26 = 0x0040 = 64
21 = 0x0002 = 2 27 = 0x0080 = 128
22 = 0x0004 = 4 28 = 0x0100 = 256
23 = 0x0008 = 8 29 = 0x0200 = 512
24 = 0x0010 = 16 210 = 0x0400 = 1024
25 = 0x0020 = 32

3. Assembly Code Instructions
pushl push a 4-byte value onto the stack
pushq push a 8-byte value onto the stack
popq pop a 8-byte value from the stack

call push the address of the next instruction onto the stack and jump to target
leave restore ebp from the stack
ret pop return address from stack and jump there

leal compute an address in first operand, put result in second

movl move 4 bytes between values, registers and memory
movq move 8 bytes between values, registers and memory
movzbl move zero-extended value to long

incl increment operand by 1
decl decrement operand by 1

addl (4 bytes) add first operand to second, put result in second
addq (8 bytes) add first operand to second, put result in second

subl subtract first operand from second, put result in second
imull signed multiply of first operand and second, put result in second
andl logical AND of first operand with second, put result in second
sall arithmetic left shift of first operand, put result in second
sarl arithmetic right shift of first operand

cmpl subtract first operand from second; set flags
testl logical AND of first operand with second; set flags (4 bytes)
testb logical AND of first operand with second; set flags (1 byte)

jmp jump to address
jg conditional jump to address if last comparison was greater than
je conditional jump to address if result of last comparison was zero
jne conditional jump to address if result of last comparison was not zero
jle conditional jump to address if result of last comparison was zero or negative

12 of 12

