
Name

UW CSE 351, Summer 2013
Final Exam Solution

9:40am - 10:40am, Friday, 23 August 2013

Instructions:
• Make sure that your exam is not missing any of the 11 pages, then write your full name and

UW student ID on the front.

• Read over the entire exam before starting to work on the problems! The last page is a
reference page that you may tear off to use during the exam; it does not have to be turned in.

• Do not spend too much time on a problem if there are other easy problems that you haven’t
solved yet.

• Feel free to use the backs of pages for working on problems, but write your answers in the
space provided below each problem. If you make a mess, clearly indicate your final answer.
Be sure to answer all parts of all questions.

• For free-form answers, keep you answers brief and feel free to use short phrases. Full
sentences NOT required.

• No books, notes, or electronic devices may be used during the exam. You may not
communicate with other students during the exam, but please ask the instructor if you need
clarification for some problem.

• Thanks for a fun quarter of 351! Cue the final exam music!

Part Awarded Possible

Part 1 20

Part 2 32

Part 3 18

Part 4 30

Total 100

1 of 11

1 CONCEPTS (20 POINTS)

1 Concepts (20 points)
Answer the following questions briefly. Full sentences NOT required.

(a) (5 points) List the two important illusions that the process abstraction provides to programs.
For each illusion, list a mechanism involved in its implementation.

1. Logical control flow: the process executes as if it has complete control over the CPU. The
OS implements this by interleaving execution of different processes via context-switching
(exceptional control flow...).
2. Private linear address space: the process executes as if it has access to a private contigu-
ous memory the size of the virtual address space.

(b) (5 points) One purpose of virtual memory is to allow programs to use more memory than
is available in the physical memory, by storing some parts on disk transparently. Name one
other useful things that can be done with the virtual memory system.

There a number of possibilities. Popular choices included:
1. Sharing of a single physical page in multiple virtual address spaces (e.g., shared library
code).
2. Memory protection mechanisms (e.g., page-granular read/write/execute permissions or
protecting one processes memory from another).

(c) (5 points) Does a TLB (Translation Lookaside Buffer) miss always lead to a page fault? Why
or why not?

No. The TLB caches page table entries. After a TLB miss, we do an in-memory page table
lookup. A page fault occurs if the page table entry is invalid. (Some people confused the
presence of a mapping in the page table with the presence of a page in cache, but these are
not strongly linked.)

(d) (5 points) Name one difference between Java references and C pointers.

There are a number of differences. The most popular included:
1. C allows pointer arithmetic; Java does not.
2. C pointers may point anywhere (including the middles of memory objects); Java refer-
ences point only to the start of objects.
3. C pointers may be cast arbitrarily (even to non-pointer types); casts of Java references
are checked to make sure they are type-safe.

2 of 11

2 CACHE FLOW (32 POINTS)

2 Cache Flow (32 points)
You are interviewing for a lucrative position with Accelerated Throughput Memories, Inc. (ATM),
a company known for its fast cache hardware. Answer the following questions to get the job.

ATM is evaluating two cache designs for machines with 32-bit physical addresses. The Fast
Data and Instruction Cache (FDIC) and the Super-Efficient Cache (SEC) both use the conventional
write-back and write-allocate policies and a true least-recently-used replacement policy. The (par-
tial) geometry of these caches is as follows:

Name Cache Size (bytes) Block/Line Size (bytes) Sets Set Associativity

FDIC 1024 32 16 2

SEC 512 16 8 4

(a) (2 points) Fill in the number of sets in the FDIC cache and the size (in bytes) of the SEC
cache in the table above. Use decimal notation. (The powers of 2 and exponent rules on
page 11 may be useful.)

(b) (6 points) Write the number of tag bits, set index bits, and block/line offset bits for each
cache in the table below. Recall the physical address size is 32 bits. (The powers of 2 and
exponent rules on page 11 may be useful.)

Number of Bits
Cache Tag Set Index Block/Line Offset

FDIC 23 4 5

SEC 25 3 4

(c) (4 points) Briefly, why does write-back often have better performance than write-through?
Full sentences NOT required.

Write-back stores updated values back to the next level of the memory hierarchy only when
a cache line/block is evicted. Write-through stores back to the next level on every write
operation. Write-back often has better performance because of locality of write operations:
more than one write to the cache line is likely to occur before it gets evicted, thus reducing
the number of next-level memory operations. You had to mention locality in addition to the
policies to get full credit.

Part 2 continues on the next page.

3 of 11

2 CACHE FLOW (32 POINTS)

(d) You will calculate the data-cache miss rates of two code sections on each of the two caches.

• Consider data accesses only. Instructions are handled by a separate cache.
• There is only one level of data cache in the system.
• For each combination of code and cache, the cache starts empty.
• Both code sections use the following declarations:

int values[4][128];
int i, j;

• All data except arrays are stored in registers; accesses to them never affects the cache.
• The values array starts at address 0x0.
• The system’s page size is 4096 bytes.
• sizeof(int) == 4

Showing calculations or explanations for your answers to the following four questions is
NOT required, but could help achieve partial credit if your answers are incorrect.

(i) (8 points) What is the miss rate of the following code on the FDIC cache? on the SEC
cache? Write your answers as fractions.

// code section A
int prod = 1;
for (i = 0; i < 8; i++) {
for (j = 0; j < 128; j++) {
prod = prod * values[i % 4][j];

}
}

FDIC miss rate = 1
8

SEC miss rate = 1
4

Note that this nested loop accesses every element in the array twice, since i ranges
from 0 through 7 and is used as an index i % 4: i = 0..3, i = 4..7. However, the
array is of size 2048 bytes = 4 * 128 * sizeof(int), which is larger than either cache, so
on the second run through the array, none of the needed lines will be there, since later
accesses to other lines evict them. The sizes and associativities of FDIC and SEC thus
make no difference.
FDIC has 32-byte cache lines, which fit 8 ints: every 8th access is a miss; the following
7 accesses hit on the same cache line. SEC has 16-byte cache lines, which fit 4 ints:
every 4th access is a miss; the following 3 accesses hit on the same cache line.

(ii) (2 points) The three types of cache misses are cold/compulsory misses, conflict misses,
and capacity misses. What type or types of cache misses occur in both caches when
executing code section A?
Both cold/compulsory misses (the caches starts empty) and capacity misses occur. Ca-
pacity misses occur on the second access to each array element because the array (the
working set) is larger than the cache.

Part 2 continues on the next page.

4 of 11

2 CACHE FLOW (32 POINTS)

(iii) (8 points) What is the miss rate of the following code on the FDIC cache? on the SEC
cache? Write your answers as fractions.

// code section B
for (i = 0; i < 128; i++) {
values[0][i] = values[1][i] + values[2][i] + values[3][i];

}

FDIC miss rate = 1
1

SEC miss rate = 1
4

Here associativity comes into play. Each loop iteration accesses all 4 elements in a
column of the array. For both caches, each of these 4 is in a separate cache line and
all 4 of these lines (at addresses differing by 512) map to the same set in the cache.
Regardless of what order we perform the accesses within an iteration, this means that,
in FDIC, with an associativity of 2, the latter two accesses will always force the cache
lines for the earlier two accesses to be evicted. On the next iteration, the former are
needed first, but are not present, so each will take and miss and they will will evict the
latter two to be placed in the cache, and so on. All accesses will miss.
SEC’s associativity of 4 means that the cache lines for all 4 elements in an iteration
can live in the cache simultaneously. Thus, after a cold miss for each, they are each
reused on the next 3 iterations (3 hits each) and then never used again.

(iv) (2 points) The three types of cache misses are cold/compulsory misses, conflict misses,
and capacity misses. What single type of cache misses accounts for the majority of
misses in the FDIC cache when executing code section B?
Conflict misses, as discussed above. Each cache line is used 8 times, but every access
misses. The first miss on each line is a cold miss; subsequent misses (7 each) are
conflict misses. These are not capacity misses because the working set size is small (4
cache lines = 128 bytes), much smaller than the cache. We never return to an element
after the one iteration that uses it; we never return to a cache line after the 8 contiguous
loop iterations that use it.

5 of 11

3 VIRTUAL MYSTERY (18 POINTS)

3 Virtual Mystery (18 points)
You may detach this page for reference. You do not need to turn it in.

We just dug up a dusty old computing system that uses virtual memory, but we could not find
much information about the paging system. We know from the ISA that the machine has 16-bit
words and uses 16-bit virtual addresses and we discovered via some tinkering that it uses 14-bit
physical addresses. Note that sizeof(short) == 2 bytes.

To learn more about the virtual memory system, we ran the following program in a process P .
It uses valloc, which is just like malloc, but allocates the payload to be page-aligned. Assume
that all local variables are stored in registers; only the array is stored in memory.

short* numbers = (short*)valloc(1024 * sizeof(short));
short i;
for (i = 0; i < 1024; i++) {

numbers[i] = i;
}
// examine physical memory here...

We verified that no disk accesses occurred during process P ’s execution, so we know all of the
virtual pages P used must be mapped to physical pages. Just before the program finished, we used
a special hardware tool to dump the contents of physical memory. Here is part of what we found.
(Note these are all hexadecimal values!)

Partial Contents of Physical Memory
Address Contents Address Contents Address Contents Address Contents
0x0a00 0x0010 0x0a20 0x0000 0x0a40 0x000e 0x0a60 0x0040
0x0a02 0x0011 0x0a22 0x0001 0x0a42 0x00e0 0x0a62 0x0041
0x0a04 0x0012 0x0a24 0x0002 0x0a44 0x0e00 0x0a64 0x0042
0x0a06 0x0013 0x0a26 0x0003 0x0a46 0xe000 0x0a66 0x0043
0x0a08 0x0014 0x0a28 0x0004 0x0a48 0x0e00 0x0a68 0x0044
0x0a0a 0x0015 0x0a2a 0x0005 0x0a4a 0x00e0 0x0a6a 0x0045
0x0a0c 0x0016 0x0a2c 0x0006 0x0a4c 0x000e 0x0a6c 0x0046
0x0a0e 0x0017 0x0a2e 0x0007 0x0a4e 0x00e0 0x0a6e 0x0047
0x0a10 0x0018 0x0a30 0x0008 0x0a50 0x0e00 0x0a70 0x0048
0x0a12 0x0019 0x0a32 0x0009 0x0a52 0xe000 0x0a72 0x0049
0x0a14 0x001a 0x0a34 0x000a 0x0a54 0x0e00 0x0a74 0x004a
0x0a16 0x001b 0x0a36 0x000b 0x0a56 0x00e0 0x0a76 0x004b
0x0a18 0x001c 0x0a38 0x000c 0x0a58 0x000e 0x0a78 0x004c
0x0a1a 0x001d 0x0a3a 0x000d 0x0a5a 0x00e0 0x0a7a 0x004d
0x0a1c 0x001e 0x0a3c 0x000e 0x0a5c 0x0e00 0x0a7c 0x004e
0x0a1e 0x001f 0x0a3e 0x000f 0x0a5e 0xe000 0x0a7e 0x004f

Assume that, except for physical addresses 0x0a40-0x0a5f, the physical memory shown
above represents part of the numbers array in process P .

Part 3 continues on the next page.

6 of 11

3 VIRTUAL MYSTERY (18 POINTS)

(a) (6 points) Given these assumptions and the contents of physical memory, what is the largest
page size the system could be using? Briefly explain your reasoning. Full sentences NOT
required. NOTE: questions (b) and (c) do not depend on this answer.

The numbers array is allocated contiguously and filled with successive short integer values
starting at zero. We can see parts of the array in physical memory and we know element zero
must be page-aligned due to valloc. Elements 0-15 appear at physical addresses 0x0a20-
0x0a3f, so 0x0a20 must be page aligned. It’s largest power-of-2 divisor is 32, so pages must
not be bigger than 32 bytes (but they could be smaller). Elements 16-31 appear at physical
addresses 0x0a00-0x0a1f and 64-79 appear at 0x0a60-0x0a7f. The longest contiguous run
of elements is 16 elements, or 32 bytes, thus pages can be no larger than 32 bytes.

Some people derived this answer via other (broken) means (e.g., arithmetic on address sizes,
some things that I could not decipher). Others suggested 214 as the maximum page size,
since pages must be small enough to fit in physical memory. Both of these answers received
partial credit. Note that 216 is not a reasonable page size since not even one page can fit
in physical memory. (In fact, 214 has problems too, though more subtle: space is needed in
memory for the page table – can’t use it all for storage!).

(b) (4 points) Assume that the system actually uses 16-byte pages and an 8-way set-associative
TLB with 32 total entries. Label the bits of a virtual address below as they are used to
determine the following:

VPO Virtual Page Offset: 16-byte pages require 16 = 24 offsets, so 4 bits.

VPN Virtual Page Number: address size minus VPO bits

TI TLB Index: A 32-entry 8-way associative TLB has 32/8 = 4 = 22 sets, so 2 bits.

TT TLB Tag: VPN bits minus TI bits

VPN VPO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TT TI

(c) (8 points) Assume 16-byte pages and assume the numbers array begins at virtual address
0x00004000. Using the contents of physical memory, reconstruct as many valid entries in
process P ’s page table as you can. Write page table entries in any order, using the notation
V PN → PPN to mean that the page table entry for virtual page number V PN is valid and
maps to physical page number PPN . Write page numbers in hexadecimal.

The key here is to recognize where parts of the array live in physical memory by the element
contents (and its correspondence with index, i.e., numbers[i] = i). The array starts at
virtual address 0x4000, so the zero element, stored in physical address 0x0a20, establishes a
mapping. Since page offsets are 4 bits, you can just drop the least-significant hex digit from
an address to get the page number. I tried to give credit for answers to (c) that matched up
with incorrect VPO/VPNs in (b). Some people listed just the mappings of the top of each
column. There are 6 recoverable mappings: 0x400 → 0x0a2, 0x401 → 0x0a3, 0x402 →
0x0a0, 0x403→ 0x0a1, 0x408→ 0x0a6, 0x409→ 0x0a7

7 of 11

4 MEMORY ALLOCATION AND MOVEMENT (30 POINTS)

4 Memory Allocation and Movement (30 points)
You may detach this page for reference. You do not need to turn it in.

Some garbage collectors for languages like Java move allocated objects from one address in
memory to another address in memory to defragment the heap. To do this safely, they must update
all references to moved objects to refer to the object’s new address. Movement is generally unsafe
in languages like C, because it is not always possible to determine exactly what values are pointers.

Suppose we are using a special dialect of C that makes it possible to find all pointers and move
allocated blocks safely. We would like to extend a memory allocator like the one in Lab 5 with the
ability to move allocated blocks in memory to reduce fragmentation.

Movement Algorithm Given an old allocated block to move and a new allocated block of
sufficient size into which to move the old, we must (1) copy the payload of the old block into the
new block, (2) replace all pointers that point to the old payload with pointers to the new payload,
and, finally, (3) free the old block.

Your Tasks You will complete three small C functions to help find and replace pointers to the
old payload with pointers to the new payload. Minor coding mistakes will not affect your score
since you do not have a compiler at hand. Use pseudocode if short on time.

Provided Code and Environment You may use the following functions and definitions in your
code. Most should be familiar from Lab 5. The machine has a 64-bit word and address size.
Blocks are 8-byte aligned. When allocated, blocks contain an 8-byte header, storing their size and
allocation tags, and a payload. You will only need to use the headers of blocks when they are free.

We added functions that return the heap_start() and heap_end() addresses. We also
added the magic holds_pointer function, which determines whether or not a given memory
location holds a pointer to some other memory location.

#define WORD_SIZE 8
// Unscaled pointer arithmetic (same as UNSCALED_POINTER_ADD ...)
#define P_ADD(x,y) ((void*)((char*)(x) + (char*)(y)))
#define P_SUB(x,y) ((void*)((char*)(x) - (char*)(y)))
#define TAG_USED 1
#define SIZE(x) ((x) & ˜3)
struct BlockInfo {

size_t sizeAndTags;
// other fields not needed today

};
typedef struct BlockInfo BlockInfo;

// Returns the address of the first block in the heap.
BlockInfo* heap_start();
// Return the address of the special end word of the heap.
BlockInfo* heap_end();
// Return 1 if memory at addr holds a pointer, 0 otherwise.

int holds_pointer(void* addr); Part 4 continues on the next page.

8 of 11

4 MEMORY ALLOCATION AND MOVEMENT (30 POINTS)

(a) (12 points) Implement a function update_heap that takes pointers to the old and new
versions of the moved block and scans over the heap block by block from heap_start()
to heap_end(), calling update_block on every allocated block to replace any old
pointers with new pointers. Do not allocate or free any blocks. Do not change headers or
footers. Do not use the free list. Our solution adds 5 lines; 2 lines hold single curly braces.

// Implemented in later question.
void update_block(BlockInfo* b, BlockInfo* old, BlockInfo* new);

void update_heap(BlockInfo* old, BlockInfo* new) {
BlockInfo* b; // A pointer for iterating over heap blocks.
// -- YOUR CODE HERE ---------------------------------------

// I ignored casting issues and improper uses of void*
// (even in my own solution) unless they dropped bits or would
// compile and do (improperly) scaled pointer arithmetic.

// Iterate over the heap, block by block.
for (b = heap_start(); b < heap_end();

b = P_ADD(b, SIZE(b->sizeAndTags))) {
// Update each allocated block.
if (b->sizeAndTags & TAG_USED) {
update_block(b, old, new);

}
}

}

(b) (8 points) Implement a function points_into that takes a pointer, ptr, a starting address,
start, and a length (in bytes), nbytes. Return 1 if ptr points to any address in the
nbytes-long range of addresses starting at start. Return 0 otherwise. Assume start
is at least nbytes before the end of the address space. Our solution adds one (long) line.

int points_into(void* ptr, void* start, size_t nbytes) {
// -- YOUR CODE HERE -------------------------------

// I ignored casting issues and improper uses of void*
// (even in my own solution) unless they dropped bits or would
// compile and do (improperly) scaled pointer arithmetic.

return ptrByte >= startByte && ptrByte < P_ADD(startByte, nbytes);

Part 4 continues on the next page.

9 of 11

4 MEMORY ALLOCATION AND MOVEMENT (30 POINTS)

(c) (10 points) Implement a function update_block that takes a pointer to a block, b, and
pointers to blocks old and new, the source and destination of the movement operation. The
function should update all pointers stored in the payload of b that point to the old payload
so they point to the new payload. The provided code iterates over the payload of b, word by
word. Your job is to update a word in the payload if it holds a pointer to an address in the
payload of the old block (see holds_pointer and points_into), replacing it with
a pointer to the corresponding location in the new block. Assume the old and new blocks
are the same size. Our solution adds 3 lines (4 lines when wrapped to fit).

Example 1 If old’s payload starts at 0x8000 and new’s payload starts at 0xc000, and a
pointer in the payload of b points to 0x8008, then this pointer should be replaced with a
pointer to 0xc008.

Example 2

b
old

new

b
old

new

before after

void update_block(BlockInfo* b, BlockInfo* old, BlockInfo* new) {
// Start address and size of the old payload
void* oldPayloadStart = P_ADD(old, WORD_SIZE);
size_t oldPayloadSize = SIZE(*((size_t*)old)) - WORD_SIZE;
void* newPayloadStart = P_ADD(new, WORD_SIZE);
void** slot; // pointer for iterating over payload words
for (slot = P_ADD(b, WORD_SIZE);

slot < P_ADD(b, SIZE(b->sizeAndTags));
slot = P_ADD(slot, WORD_SIZE)) {

// -- YOUR CODE HERE --------------------------------------
// I ignored casting issues and improper uses of void*
// (even in my own solution) unless they dropped bits or would
// compile and do (improperly) scaled pointer arithmetic.

// If memory at address slot is used store a pointer
// and the pointer stored there points into the old payload
// then update the pointer.
// Excessive or insufficient dereferencing were common problems.
if (holds_pointer(slot)

&& points_into(*slot, oldPayloadStart, oldPayloadSize)) {
// Old pointer may point anywhere in old payload.
// Point to corresponding offset into new payload.

*slot = P_ADD(newPayloadStart, P_SUB(*slot, oldPayloadStart));
}

}
}

10 of 11

6 REFERENCE

5 Just for Fun
Write a pun using 351 material.

I won’t give away the puns suggested, in order to let their creators enjoy maximum effect when
using them on unsuspecting 351 students.

6 Reference
You may detach this page for reference. You do not need to turn it in.

Hexadecimal
Hex Binary Decimal
0x0 0000 0
0x1 0001 1
0x2 0010 2
0x3 0011 3
0x4 0100 4
0x5 0101 5
0x6 0110 6
0x7 0111 7
0x8 1000 8
0x9 1001 9
0xa 1010 10
0xb 1011 11
0xc 1100 12
0xd 1101 13
0xe 1110 14
0xf 1111 15

Powers of Two
20 = 0x0001 = 1 27 = 0x0080 = 128
21 = 0x0002 = 2 28 = 0x0100 = 256
22 = 0x0004 = 4 29 = 0x0200 = 512
23 = 0x0008 = 8 210 = 0x0400 = 1024
24 = 0x0010 = 16 211 = 0x0800 = 2048
25 = 0x0020 = 32 212 = 0x1000 = 4096
26 = 0x0040 = 64 213 = 0x2000 = 8192

2a ∗ 2b = 2a+b

2a/2b = 2a−b

11 of 11

