
CSE351 Autumn 2013 – Midterm Exam (30 Oct 2013)

Please read through the entire examination first! We designed this exam so that it can be
completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 6 problems for a total of 100 points. The point value of each problem is
indicated in the table below. Write your answer neatly in the spaces provided. If you
need more space (you shouldn't), you can write on the back of the sheet where the
question is posed, but please make sure that you indicate clearly the problem to which the
comments apply. Do NOT use any other paper to hand in your answers. If you have
difficulty with part of a problem, move on to the next one. They are independent of each
other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Name: ____Sample Solution______

ID#: ________________________

Problem Max Score Score
1 10 10
2 10 10
3 25 25
4 20 20
5 25 25
6 10 10

TOTAL 100 100

1. Number Representation – Integers (10 points)

A. Explain why we have a Carry-Flag and an Overflow-Flag in x86 condition codes.
What is the difference between the two? (Explain in at most two sentences.)

(4 points)
The carry flag is used for unsigned numbers and indicates a carry-out of 1 during
addition from the most-significant-bit. The overflow flag applies to signed
arithmetic and indicates that the addition yielded a number that was too large a
positive or too small a negative value.

B. Add 11011001 and 01100011 as two's complement 8-bit integers & convert the result
to decimal notation.

(3 points)
 11011001 = -39
+ 01100011 = + +99
 00111100 = +60

C. Convert your answer from the previous problem to a 2-digit hex value.

(3 points)
60 = 0x3c

2. Number Representation – Floats (10 points)

For this question, assume we are working with a 64-bit architecture.

A. For each of the casts below, circle T if a loss of precision is possible and F, otherwise.

(4 points)
int → float T F

float → int T F

double → int T F

int → double T F

B. This is how single-precision floating point numbers are stored in memory.

Fill in the corresponding fields for the two numbers below. Please be sure to show the
bits by writing “0”, “1”, “all 0s”, “all 1s”, or a pattern of 0s and 1s in the spaces provided.

(2 points)

0 (zero):

s = ___0_________

exp = ___all 0s______

frac = ___all 0s______

- ∞ (negative infinity):

s = ___1_________

exp = ___all 1s______

frac = ___all 0s______

C. Consider the following code snippet where the variables a and b are both floats.

if (a + (b – b) == a) { printf(“Equals a\n”); }
if ((a + b) – b) == 0) { printf(“Equals 0\n”); }

Suppose the user runs this program and sees the following output:

Equals a
Equals 0

How is this possible given that addition and subtraction are associative, for example,
(a + b) + c is equal to a + (b + c)? (Two sentences max.)

(2 points)
Because, the representation and range of floating point number representations
are finite, associativity no longer can be relied upon. If the value b is very large
and a very small, then the representation will not enough precision to represent a
+ b as different than just b and we will see the behavior above.

Give an example value for both a and b in decimal that would generate this output (do
not consider the case where a or b are equal to 0)?

(2 points)

a = ____1.0E-20____

b = ____1.0E20____

3. C to Assembly Code (25 points)

Write x86-64 assembly instructions (see appendix for the list of instructions that you can
use) that might be generated by the C code for the function foo (note: you are not being
asked to write any code for the function bar which you can simply assume is at label
bar). It may be a good idea to consult the register chart provided at the back of this
exam.

int bar(int c) { … }

int foo(int a, int b) {
 int x;
 x = bar(a >> 4);
 if (x != 0)
 return x;
 else
 return b;
}

Place the assembly code for function foo here (you should only need between 5 and 10
instructions) and add a comment to each line:

 push %rsi ; save b (passed in %rsi) on the stack
 ; must do this as bar may use %rsi
 ; %rsi is a caller-saved register
 sar $0x4,%rdi ; a is in %rdi so shift it right by 4
 ; and leave result there so it is ready
 ; to be passed as sole argument to bar
 call bar ; bar(a >> 4), its return value will be
 ; in %rax and this will be the variable x
 pop %rsi ; restore b, saved value of original %rsi
 test %rax,%rax ; test x to set condition codes
 ; could be done with “cmp $0, %rax”
 jne end ; jump to return if x != 0
 ; return value of x is already in %rax
 mov %rsi, %rax ; then, if x == 0
 ; get b from %rsi and put in %rax
 ; as return value in this branch
end:
 ret

4. Assembly Code to C (20 points)

Given the following assembly instruction for the function ‘mystery’, on a IA32 32-bit
architecture derive the C code for the function (you can assume all values are signed
integers).

mystery:
 pushl %ebp
 movl %esp,%ebp
 movl 8(%ebp),%eax
 addl %eax,%eax
 addl 8(%ebp),%eax
 addl $2,%eax
 subl 12(%ebp),%eax
 popl %ebp
 ret

Please write the code for the function below (make sure to include return and parameter
types; the body of the function should only need to be a few C statements at most) and
add a comment to each statement you write.

int mystery(int a, int b) {

 int c = a // temp variable c initially a
 // read first argument at 8(%ebp)
 c = c + c; // c = 2*a
 // first add instruction
 c = c + a; // c = 3*a
 // second add instruction
 c = c + 2; // c = 3*a + 2
 // third add instruction
 c = c – b; // c = 3*a + 2 – b
 // subtract 2nd argument at 12(%ebp)
 return c;

}

or, more simply,

int mystery(int a, int b) {

 return (3*a + 2 – b);

}

5. Stack Discipline (25 points)

The following table shows the contents of a part of stack memory just after calling a
function in an x86-64 architecture.

Memory address Value
0x7ffffffffffffad8 0xf00
0x7ffffffffffffad0 0x7ffffffffffffb00
0x7ffffffffffffac8 0xcab1e
0x7ffffffffffffac0 0xface
0x7ffffffffffffab8 0xdeadbeef
0x7ffffffffffffab0 0x12
0x7ffffffffffffaa8 0x3

%rbp = 0x7ffffffffffffad0
%rsp = 0x7ffffffffffffaa8

A. Assuming a 32-bit stack discipline, what is the size of the stack frame for the function
shown in the diagram?

(8 points)
%rbp points to the first element of the stack frame,
%rsp points to the last,
therefore there are 6 entries in all or 48 bytes in the stack frame

B. What is the value of the program counter (%rip) after the function returns?

(4 points)
The return address is just above the stack frame, therefore the function returns to
address 0xf00

C. Suppose that no parameters were passed into the function on the stack. What are the
values of rsp and rbp when this function returns?

(7 points)
The base pointer is restored from the stack, it is the first value in the stack frame
at the address of the current %rbp, therefore the new value of %rbp will be
0x7ffffffffffffb00. The stack pointer will be pointing to the top of the stack just
after popping off the return address, therefore %rsp will be 0x7ffffffffffffae0.

D. The first 4 lines of assembly for this particular function are below. What is the value
in register rbx after executing the fourth line of the assembly below?

push %rbp (6 points)
mov %rsp, %rbp ______0xcab1e________
push %rbx

 mov $20, %rax

6. Structs (10 points)

Suppose you are given the following struct definition for an x86-64 architecture which is
used to implement a linked list of student records.

typdef struct node{
 char first [15];
 double gpa;
 int id;
 char last [15];
 node* next;
} student;

A. Given the following diagram for the bytes of this struct, specify the byte offsets of
each of the five fields in the space provided below each and the size of the two shaded
areas of internal fragmentation (wasted space) below them.

(4 points)

 first gpa id last next

Offset _0_ _16_ _24_ _28_ _48_

Space _1 _5

B. What is the size of the struct?

(2 points)

56 bytes

C. How much internal fragmentation does this struct have?

(2 points)

6 bytes

D. How much external fragmentation does this struct have?

(2 points)

0 bytes

REFERENCES

Powers of 2:

20 = 1
21 = 2 2-1 = .5
22 = 4 2-2 = .25
23 = 8 2-3 = .125
24 = 16 2-4 = .0625
25 = 32 2-5 = .03125
26 = 64 2-6 = .015625
27 = 128 2-7 = .0078125
28 = 256 2-8 = .00390625
29 = 512 2-9 = .001953125
210 = 1024 2-10 = .0009765625

Assembly Code Instructions:

push push a value onto the stack and decrement the stack pointer
pop pop a value from the stack and increment the stack pointer

call jump to a procedure after first pushing a return address onto the stack
ret pop return address from stack and jump there

mov move a value between registers and memory
lea compute effective address and store in a register

add add src (1st operand) to dst (2nd) with result stored in dst (2nd)
sub subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
and bit-wise AND of src and dst with result stored in dst
or bit-wise OR of src and dst with result stored in dst
sar shift data in the dst to the right (arithmetic shift)

by the number of bits specified in 1st operand

jmp jump to address
jne conditional jump to address if zero flag is not set
cmp subtract src (1st operand) from dst (2nd) and set flags
test bit-wise AND src and dst and set flags

Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved,
namely, rbx, rbp, r12, r13, r14, and r15. rsp is a special register.

