
CSE351 Spring 2012 – Final Exam (6 June 2012)  
  

 
 
Please read through the entire examination first!  We designed this exam so that it can be 
completed in 90 minutes and, hopefully, this estimate will prove to be reasonable.   
 
There are 5 problems for a total of 170 points.  The point value of each problem is 
indicated in the table below and at every part of every problem. Write your answer neatly 
in the spaces provided.  If you need more space (you shouldn't), you can write on the 
back of the sheet where the question is posed, but please make sure that you indicate 
clearly the problem to which the comments apply.  Do NOT use any other paper to hand 
in your answers. If you have difficulty with part of a problem, move on to the next one.  
They are independent of each other. 
 
The exam is CLOSED book and CLOSED notes.  Please do not ask or provide anything 
to anyone else in the class during the exam.  Make sure to ask clarification questions 
early so that both you and the others may benefit as much as possible from the answers.  
 

 
 
 
 

 
Name:  ______Sample Solution____ 
 
ID#:  ________________________ 

  
  

Problem Max Score      Score
1 30 30 
2 30 30 
3 30 30 
4 30 30 
5 50 50 

TOTAL 170 170 
 
  



1. Data Representation (30 points) 
 
Draw the memory layout for the following struct (assume a 32-bit architecture and 
alignment to 8-byte boundaries – in other words, all structs must be a multiple of 8 bytes 
– with any padding at the end of the struct rather than between fields): 
 
typedef struct xform { int i[2][2];  
                       float * factor; 
                       int color; 
                       int x;  
} xform; 
 

a) (10 points) Draw an int as , a pointer as , and wasted space as a 
shaded or hashed box . 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
b) (5 points) How much fragmentation is there for this data structure?  Recall that 
fragmentation is the percentage of wasted memory due to alignment considerations, in 
other words: 
 

wasted bytes due to alignment for one element * 100% total size of one struct + wasted bytes due to alignment for one element 
  

 
 

 

4    * 100%   =            12.5%              28 + 4 
 
 



c) (15 points) Redraw the memory that Java would use.  Remember that in Java, arrays 
are always 1-dimensional and use pointers to point to the next level (make sure your 
pointers in the diagram go to the right place).  You can use non-contiguous parts of 
memory as needed. 
 
 

 
 



2. Puzzlers for Pointers, Addresses, and Values (30 points) 
 
Back to C.  A memory has the following contents (in little-endian format): 

 
Variable Address Bytes Final Value of Bytes 

A 0x08000000 00 00 00 08 0c 00 00 08 
B 0x08000004 04 00 00 08  
C 0x08000008 fe ff ff ff 00 00 00 00 
D 0x0800000c ff ff ff ff 02 00 00 00 
E 0x08000010 00 00 00 00 05 00 00 00 
F 0x08000014 01 00 00 00 18 00 00 08 
G 0x08000018 02 03 04 05  
H 0x0800001c 33 35 31 00 04 00 00 08 

 
Given the following declarations (assuming a 32-bit architecture): 
 
int *A, *B; 
float C, E, G; 
int D, F; 
typedef struct xform { int i[2][2];  
                       float * factor; 
                       int color;  
} xform; 
xform *H; 
 
Fill in columns for the address (in hex) that is changed in each statement and the value (in 
hex) to which it is changed.  NOTE: The statements are executed in sequence and 
changes made to memory apply in the following lines. 
 
 

C Statement (5 points each) Address (hex) Value (hex) 

A = B + 2; 0x08000000 0x0800000c 

C = (float) (*A + F); 0x08000008 0x00000000 

H = (xform *) &B; 0x0800001c 0x08000004 

H->factor = &E + 2; 0x08000014 0x08000018 

D = (int) *((char *)(H->factor)); 0x0800000c 0x00000002 

H->i[(D >> 1)][1] = D + 3; 0x08000010 0x00000005 



3. Processes and Virtual Memory (30 points) 
 
Answer the following questions with just a couple of sentences. 
 
a) (4 points) What are the two principal abstractions that make the process model easy for 
programmers? 
 
 

1) Each process thinks it is the only one running on the processor. 
2) Each process thinks it has the full memory address space at its disposal. 

 
 
 
 
 
 
 
b) (6 points) When creating a child process as a result of a fork, what does the operating 
system copy from the parent process to give to the child process?  Is there anything that is 
done differently for parent and child? 
 
 
It creates an exact copy of the parent process’s entire memory (including stack, heap, 
page tables, etc.), instruction pointer register, and condition codes.  The child process 
sees the fork return a 0 while the parent process sees the fork return the process ID of the 
child. 
 
 
 
 
 
c) (6 points) Are pointers in C and references in Java the same thing?  Give an example to 
illustrate your answer. 
 
Pointers in C can point to any memory location.  Pointers in Java can only point to the 
start of an object (struct).  As an example, in Java we can’t create a pointer to a field 
within an object. 



d) (6 points) What are some types of information that need to be explicitly saved by the 
operating system when switching between processes?  You can assume you have a write-
through cache.  Put a check mark in the “Yes” or “No” column. 
 

 Yes No 

Register contents   

Condition codes   

Program instruction pointer   

Stack memory   

Cache contents   

TLB entries   
 
 
 
e) (4 points) In a virtual memory system with 32-bit virtual addresses and 4KB page 
sizes, how large is the page table?  How many pages will it require just to store this table? 
 
32 – log(4K) = 32-12 = 20 bits, thus we need 220 or 1M entries.  With each entry being 4 
bytes, we’ll need 4MB of page storage or 1K pages of 4K bytes each. 
 
 
 
 
 
 
 
 
 
f) (4 points) If a cache has a total storage capacity of 1024 bytes and is organized into 8 
byte blocks, how many sets does it have if it is 2-way set associative?  If addresses are 16 
bits, how many bits are used for the tag? 
 
 
C = B * S * E where C is cache size, B is block size, S is number of sets, and E is the 
degree of associativity (E =1 for a direct mapped cache).  In this case, by substitution, we 
have that 1024 = 8 * S * 2.  Solving for S, we know we have 64 sets.  Thus, 6 bits are 
used to specify the set, while 3 bits are used to specify the byte.  In a 16-bit architecture, 
that leaves 16 – 6 – 3, or 7 bits for the tag. 



4. Caches and Virtual Memory (30 points) 
 
A system implements virtual memory with a translation look-aside buffer (TLB – 16 
entries, 2-bytes lines, 4-way set associative), page table (PT – 1024 page entries, only the 
first 16 shown below), and memory cache (16 entries, 4-byte lines, direct-mapped).  The 
initial contents are shown in the tables below.  The virtual address is 16 bits (4 hex digits) 
while the physical address is 12 bits (3 hex digits); the page size is 64 bytes. 
 
 

TLB 

 
 
 

Page Table 

   
 
 
 

Cache 

 
  



a) (5 points) Outline the bits corresponding to each of the components of the virtual 
address, namely, the virtual page number (VPN), the virtual page offset (VPO), the TLB 
set index (TLBI), and the TLB tag value (TLBT). 
 
 

 
 
 
 
b) (5 points) Outline the bits corresponding to each of the components of the physical 
address, namely, the physical page number (PPN), the physical page offset (PPO), the 
cache set index (CI), the cache tag value (CT), and the cache byte offset (CO). 
 
 

 
 
 
 
c) (20 points) Determine the returned values for the following sequence of accesses and 
specify whether a TLB miss, page fault, and/or cache miss occurred.  In some cases, it 
may not be possible to determine what value is accessed or whether there is a cache miss 
or not.  For these cases, simply write ND (for Not Determinable). 
 
 

Virtual Address Physical Address Value TLB Miss? Page Fault? Cache Miss?

0x036A 0xB6A 0xDA N N N 

0x013F ND ND Y Y ND 

0x0722 0x0A2 ND N N Y 

0x0000 0xA00 0x99 Y N N 



5. Call Stacks and Memory Allocation (50 points) 
 
In this problem you will implement three debugger commands for a 32-bit x86 Linux 
machine.  Since this is a 32-bit machine, remember that all pointers and registers have 32 
bits, and remember that the stack looks like this: 
 
          [   ...        ] 
          [   args       ]    Higher Addresses 
          [   ret addr   ] 
   %ebp-> [   old %ebp   ] 
          [   local vars ]    Lower Addresses 
          [   ...        ] 
 
a) (20 points) First we will implement an equivalent of gdb's "backtrace" command.  This 
command prints information about each stack frame, including the current stack frame 
and everything up to the call to main().  For example, if we interrupt the code on the left 
with a breakpoint at the line marked with an arrow and then invoke the "backtrace" 
command, our debugger might print the output shown on the right: 
 
   1    int foo(int x) {                      (gdb) backtrace 
   2 =>   x += 6;                               in foo() at line 2 
   3      return x;                             in main() at line 6 
   4    } 
   5    int main(int argc, char *argv[]) { 
   6      int y = foo(5); 
   7    } 
 
We have started the implementation for you.  Your job is to complete the 
printBacktrace() function given two functions to call: printCallerStackFrame() to print 
each frame on the stack, and isMain() to determine when you've reached the main stack 
frame (which is the last stack frame you should print). 
 
   void printCallerStackFrame(int eip, int ebp); 
   bool isMain(int eip); 
 
   void printBacktrace(int eip, int ebp) { 
       printCallerStackFrame(eip, ebp); 
 
       // ----- Your code here ----- 
 
 
       while (!isMain(eip)) { 
         eip = *((int*)ebp + 1); 
         ebp = *(int*)ebp; 
         printCallerStackFrame(eip, ebp); 
       } 
 
 
       // -------------------------- 
   } 



b) (10 points) Your machine comes with a simple memory allocator that uses an implicit 
free list.  Each block in the heap has a 32-bit header that contains the size of the block 
along with a “used” bit that is set when the block is allocated.  The size is always aligned 
to 8 bytes, and the “used” bit is stored in the least-significant bit of the header. 
 
This is almost exactly like the implicit list we saw in lecture, with one difference: every 
block starts with a special 4-byte magic word that is always 0xdeadbeef.  Every call to 
malloc() ensures that the magic word is set to 0xdeadbeef.  The format of a block is 
shown below: 
 
   [   magic word  ]    (should be 0xdeadbeef) 
   [   header      ]    (size and TAG_USED bit) 
   [   payload     ] 
   [   ...         ] 
 
We will implement a “blockinfo” command.  This command takes one argument, a 
pointer “x”, and then prints information about the block pointed to by “x”.  Namely, it 
prints the size of the block and whether or not the block is currently allocated.  You can 
assume “x” always points to the payload area of an object.  Your job is to finish the 
implementation of printBlockInfo().  You need to compute “size”, which is the size of the 
block, and “alloc” which is 1 if the block is allocated, and 0 otherwise.  We have 
provided macros that will be useful.  Remember to cast your pointers correctly! 
 
   #define SIZE(x)  ((x) & ~7) 
   #define TAG_USED 1 
 
   void printBlockInfo(void *x) { 
     int size; 
     int alloc; 
      
     // ------- Your code here ------- 
 
 
 
 
     int header = *((int*)x - 1); 
     size  = SIZE(header); 
     alloc = header & TAG_USED 
 
 
 
 
     // ------------------------------ 
 
     printf("  Block size: %d\n", size); 
     printf("  Block allocated?: %d\n", alloc); 
   } 
 



c) (10 points) Lastly, we will implement a “memcheck” command that will scan the heap 
and ensure that the magic word is set to 0xdeadbeef for every block in the heap.  Your 
job is to finish implementing the memcheck() function below.  It should return “true” if 
all blocks have a valid magic word, and “false” otherwise.  The heap ends with a special 
block of size 0. 
 
   struct BlockInfo { 
     int magic; 
     int header; 
   }; 
 
   define MAGIC  0xdeadbeef 
 
   bool memCheck(BlockInfo *firstBlock) { 
     BlockInfo *block; 
      
     block = firstBlock; 
 
     // ------- Your code here ------- 
 
 
 
     while (SIZE(block->header) != 0) { 
       if (block->magic != MAGIC) 
         return false; 
       block = (BlockInfo*)((char*)block + SIZE(block->header)); 
     } 
     return true; 
 
 
 
     // ------------------------------ 
   } 
 
d) (10 points) What kind of bugs does “memcheck” help find in the memory 
allocator?  What kind of bugs does “memcheck” help find in user programs?  Describe an 
example of each type of bug.  Also, describe a bug “memcheck” does not find. 
 
 
In the memory allocator, “memcheck” ensures there are no unaccounted for areas of 
memory, in other words, they are all well-formed blocks with 0xdeadbeef at the front and 
a size (until the last block of size 0 is encountered).  In user programs, “memcheck” finds 
evidence of buffer overflow bugs – overwriting past the end of a block (as in a buffer 
overflow).  “memcheck” does not catch bugs where free blocks are not properly 
coalesced. 
  



REFERENCES 
 
Powers of 2: 
 
20  = 1  
21  = 2 2-1  = .5 
22  = 4 2-2  = .25 
23  = 8 2-3  = .125 
24  = 16 2-4  = .0625 
25  = 32 2-5  = .03125 
26  = 64 2-6  = .015625 
27  = 128 2-7  = .0078125 
28  = 256 2-8  = .00390625 
29  = 512 2-9  = .001953125 
210 = 1024 2-10 = .0009765625 
 
 
Data Sizes: 
 
1 KB = 210 B  
1 MB = 220 B  
1 GB = 230 B  
 
Binary-Hex conversion:  
 
0x0 = 0b0000 
0x1 = 0b0001 
0x2 = 0b0010 
0x3 = 0b0011 
0x4 = 0b0100 
0x5 = 0b0101 
0x6 = 0b0110 
0x7 = 0b0111 
0x8 = 0b1000 
0x9 = 0b1001 
0xA = 0b1010 
0xB = 0b1011 
0xC = 0b1100 
0xD = 0b1101 
0xE = 0b1110 
0xF = 0b1111 
 
 


